Article Text

other Versions

PDF
Biomechanical attributes of microcatheters used in liquid embolization of intracranial aneurysms
  1. Scott D Simon1,
  2. Adam S Reig2,
  3. Kellie J Archer3,
  4. Robert A Mericle2
  1. 1Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
  2. 2Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
  3. 3Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
  1. Correspondence to Adam S Reig, Department of Neurological Surgery, Vanderbilt University Medical Center, T4224 MCN, Nashville, TN 37232-2380, USA; adam.reig{at}vanderbilt.edu

Abstract

Objective A steel-reinforced and a nitanol-reinforced microcatheter are both approved for use with Onyx HD-500 embolization of intracranial aneurysms. The biomechanical behavior of these catheters when used with high viscosity embolic liquids is poorly understood. We performed biomechanical laboratory testing and examined our clinical experience to identify situations where one catheter might have an advantage over the other.

Methods The catheters were tested for detachment force from aneurysm cast, burst pressure, burst location, and pressure under dynamic delivery pressure. The results were compared using ANOVA.

Results The average detachment forces for the Echelon 10, 14, and Rebar 14 catheters were 97.6, 76.825, and 62.6 g, respectively (p=0.023). The average burst pressures for the Echelon 10, 14, and Rebar 14 were 1108, 1213, and 1365 psi, respectively (p=0.003). The average burst location was 26.0, 20.0, and 4.5 mm, respectively, from the tip (p=0.035). There was no significant difference regarding burst location (p=0.39). The delivery pressures of the catheters were not significant (p=0.98). Two cases are presented that illustrate the importance of these findings and how they can be incorporated into practice.

Conclusion The lower detachment force of the Rebar 14 makes it ideal for liquid embolization, but its stiffness makes it less desirable for accessing smaller aneurysms or navigating tortuous anatomy. The Echelon 10 should be avoided unless it is the only catheter that can access an aneurysm because of small size or tortuous anatomy. In such cases, the higher detachment force suggests a stent should be in place to prevent the cast from being destabilized.

  • Endovascular
  • embolization
  • aneurysm
  • liquid embolic
  • microcatheter
  • angiography
  • catheter
  • intervention
  • material

Statistics from Altmetric.com

Footnotes

  • Competing interests The senior author (RAM) previously performed physician training and proctoring for Onyx HD-500 aneurysm treatment.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.