Article Text

other Versions

PDF
Original research
Hemodynamic differences between unstable and stable unruptured aneurysms independent of size and location: a pilot study
  1. Waleed Brinjikji1,
  2. Bong Jae Chung2,
  3. Carlos Jimenez3,
  4. Christopher Putman4,
  5. David F Kallmes1,
  6. Juan R Cebral2
  1. 1Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
  2. 2Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia, USA
  3. 3Department of Neurosurgery, University of Antioquia, Medellin, Colombia
  4. 4Department of Interventional Neuroradiology, Inova Fairfax Hospital, Falls Church, Virginia, USA
  1. Correspondence to Dr Waleed Brinjikji, Department of Neuroradiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55901, USA; brinjikji.waleed{at}mayo.edu

Abstract

Background While clinical and angiographic risk factors for intracranial aneurysm instability are well established, it is reasonable to postulate that intra-aneurysmal hemodynamics also have a role in aneurysm instability.

Objective To identify hemodynamic characteristics that differ between radiologically unstable and stable unruptured intracranial aneurysms.

Materials and methods 12 pairs of unruptured intracranial aneurysms with a 3D rotational angiographic set of images and followed up longitudinally without treatment were studied. Each pair consisted of one stable aneurysm (no change on serial imaging) and one unstable aneurysm (demonstrated growth of at least 1 mm diameter or ruptured during follow-up) of matching size (within 10%) and locations. Patient-specific computational fluid dynamics models were created and run under pulsatile flow conditions. Relevant hemodynamic and geometric variables were calculated and compared between groups using the paired Wilcoxon test.

Results The area of the aneurysm under low wall shear stress (low shear stress area (LSA)) was 2.26 times larger in unstable aneurysms than in stable aneurysms (p=0.0499). The mean aneurysm vorticity was smaller by a factor of 0.57 in unstable aneurysms compared with stable aneurysms (p=0.0499). No statistically significant differences in geometric variables or shape indices were found.

Conclusions This pilot study suggests there may be hemodynamic differences between unstable and stable unruptured cerebral aneurysms. In particular, the area under low wall shear stress was larger in unstable aneurysms. These findings should be considered tentative until confirmed by future larger studies.

  • Aneurysm
  • Subarachnoid

Statistics from Altmetric.com

Request permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.