Responses

PDF
Original research
Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging
Compose Response

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Author Information
First or given name, e.g. 'Peter'.
Your last, or family, name, e.g. 'MacMoody'.
Your email address, e.g. higgs-boson@gmail.com
Your role and/or occupation, e.g. 'Orthopedic Surgeon'.
Your organization or institution (if applicable), e.g. 'Royal Free Hospital'.
Statement of Competing Interests

PLEASE NOTE:

  • Responses are moderated before posting and publication is at the absolute discretion of BMJ, however they are not peer-reviewed
  • Once published, you will not have the right to remove or edit your response. Removal or editing of responses is at BMJ's absolute discretion
  • If patients could recognise themselves, or anyone else could recognise a patient from your description, please obtain the patient's written consent to publication and send them to the editorial office before submitting your response [Patient consent forms]
  • By submitting this response you are agreeing to our full [Response terms and requirements]

Vertical Tabs

Other responses

  • Published on:
    Prediction of hyperperfusion phenomenon after carotid artery stenting and carotid angioplasty using quantitative DSA with cerebral circulation time imaging; methodological issues
    • Siamak Sabour, Academic Staff Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran

    I was interested to read the paper by Yamauchi K and colleagues published in J Neurointerv Surg 2017 Sep. Hyperperfusion syndrome after carotid interventions has a low incidence but it can lead to morbidity and mortality. The aim of the authors was to evaluate the usefulness of quantitative DSA for predicting hyperperfusion phenomenon (HPP) after carotid artery stenting and angioplasty. Thirty-three consecutive patients with carotid stenosis treated with carotid artery stenting or angioplasty between February 2014 and August 2016 were included. The cerebral circulation time (CCT) was defined as the difference in the relative time to maximum intensity between arterial and venous regions of interest set on the angiograms. HPP was diagnosed straight after the procedure with qualitative 123I-IMP single-photon emission CT (SPECT). Cut-off points for detecting HPP for preprocedural CCT and periprocedural change of CCT were assessed by receiver operating characteristic analysis using 123I-IMP SPECT as reference standard. Differences between patients with and without HPP were analyzed by Student's t test for continuous variables and Fisher`s exact test for categorical variables. A p value of <0.05 was considered statistically significant. Receiver operating characteristic curve analysis of preprocedural CCT and ΔCCT was performed for the prediction of HPP, with 123I-IMP SPECT as standard of reference. They reported that the optimal cut-off points of preprocedural CCT and c...

    Show More
    Conflict of Interest:
    None declared.