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ABSTRACT
While intravenous administration of tissue plasminogen
activator (tPA) remains the only FDA-approved treatment
modality for acute ischemic stroke, many patients do not
meet the criteria for intravenous tPA and are offered
intra-arterial therapy. Rapid advances in devices and
approaches have marked the evolution of thrombectomy
over the past decade from rudimentary mechanical
disruption, followed by intra-arterial thrombolytic
infusions to increasingly effective thrombectomy devices.
We review the critical advancements in thrombectomy
technique that have evolved and the key anatomic and
technical challenges they address, from first-generation
Merci retrieval systems to second-generation Penumbra
aspiration systems and third-generation stent retrievers,
as well as nuances of their uses to maximize their
effectiveness. We also highlight more recent advances
that offer patients hope for more expedient vessel
recanalization.

INTRODUCTION
Since its approval in 1995, the administration of sys-
temic intravenous tissue plasminogen activator (tPA)
is the only FDA-approved treatment modality for
acute ischemic stroke,1 2 despite rapid advances in
thrombectomy devices. However, the restrictive
time window after symptom onset (up to 3–4.5 h)
and sociocultural and geographical barriers to acces-
sing rapid care results in only a small minority of
patients with ischemic stroke receiving treatment
with intravenous tPA.3 4 In addition, intravenous
tPA has been demonstrated to be less effective in
large vessel occlusions.5 Intra-arterial techniques
were attempted to treat large vessel occlusions, ini-
tially using urokinase and prourokinase as described
in the PROACT I and II trials,6 7 which was fol-
lowed by the development of devices designed for
intra-arterial thrombectomy and thromboaspiration.
Although recent trials have failed to show a benefit
over intravenous tPA of intra-arterial intervention
using available devices,8 9 patients outside the intra-
venous tPA window are still considered candidates
for intra-arterial procedures.
Acute stroke thrombectomy approaches have

evolved rapidly. Spurred primarily by advances in
catheter technology as well as the thrombectomy
device itself, we are now able to achieve higher
recanalization rates than ever before. We review the
key technological advances and design modifica-
tions that have allowed for navigation around the
ophthalmic turn for more distal delivery of larger-

bore catheters providing more aspiration force dir-
ectly applied at the thrombus interface.

INTRA-ARTERIAL THROMBOLYSIS
Historically, the mainstay of intra-arterial therapy for
clot lysis in acute ischemic stroke was the administra-
tion of a thrombolytic agent into the vessel of inter-
est.6 10 11 The PROACT II study was a randomized
trial of intra-arterial infusion of recombinant prouro-
kinase (r-proUK) versus placebo (heparinized saline)
in patients with angiographically documented prox-
imal middle cerebral artery occlusion.7 Thrombolytic
infusion was associated with significantly higher reca-
nalization rates and improved patient outcomes with
acceptable complication rates.6 7 Despite this signifi-
cant difference, the FDA did not approve prouroki-
nase for this indication. Local thrombolytic infusions
have been performed since the PROACT II study in
‘off-label’ fashion to treat both anterior and posterior
circulation occlusions.4 10–13 In addition, some
operators employed intra-arterial infusions of tPA or
abciximab to further promote clot lysis.14

Adjunctive endovascular
thrombectomy attempts
To overcome the limitations of intra-arterial
thrombolytic infusions alone, neurointerventionalists
initially began attempting clot disruption with micro-
wire manipulation. Shaping the microwire into a ‘J’
or ‘C’ shape and repeatedly advancing it through the
thrombus was sometimes successful at recanalizing an
occluded vessel. For more aggressive attempts, the
microcatheter could be repeatedly advanced through
the thrombus while leaving the microwire purchased
in the distal vasculature to ‘plow’ through the throm-
bus. Early methods of thrombectomy included use of
the goose-neck snare for clot capture and removal.
In 2005, flexible intracranial balloon catheters

were introduced. They were initially designed for
vessel angioplasty and later for balloon remodeling
during aneurysm coil embolization. Shortly there-
after, these balloons were used to achieve mechan-
ical clot disruption by repeated angioplasty of the
thrombus itself.15

The introduction of intracranial stents presented
another potential tool to achieve thrombectomy.16

The Enterprise vascular reconstructive device
(Codman, Raynham, Massachusetts, USA) is a
retrievable closed-cell design stent that could be par-
tially deployed within the segment of the occluded
vessel to achieve both mechanical disruption and
partial flow restoration without committing to per-
manent stent deployment.17 18 Some operators have
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deployed intracranial stents in the occluded vessel, even in cases
not involving underlying intracranial stenosis.19 20 The SARIS
trial18 21 was an FDA-approved pilot study of stent placement
within occluded vessels in acute stroke that showed high recanali-
zation rates and good functional outcomes; however, the tech-
nique is limited by the need for dual antiplatelet therapy.

All of these devices were used in acute ischemic stroke in an
‘off-label’ fashion, not primarily designed for stroke interven-
tion. However, these devices and uses set the stage for the
design and development of dedicated devices. The following
section outlines the various approaches, with a recognition that
iterative improvements of each approach continue to be made.

EVOLUTION OF APPROACHES TO TREATMENT OF ACUTE
STROKE

The first device: the Merci retriever
In 2004 the Merci retriever (Concentric Medical, Mountain View,
California, USA) became the first mechanical thrombectomy
device cleared for human use in the USA by the FDA.22 The
Merci device primarily works by engaging the thrombus with a
‘corkscrew’ distal wire and suture tip deployed from within the
clot, then removing the thrombus en bloc to achieve recanaliza-
tion. The device itself is delivered within a microcatheter (18 L,
Concentric Medical). The original iterations of the Merci X series
included the 2.5, 3.0 and 3.5 mm diameters. Later the L series
was introduced in 2006 and the V series in 2008. All these
systems were employed using a balloon guide catheter that was
positioned at the carotid bifurcation. Balloon inflation causes tem-
porary flow reversal, allowing the Merci to be retrieved into the
guide while mitigating the possibility of emboli showering to distal
territories. However, clot retrieval into the guide catheter still
required a long distance to be traveled while maintaining purchase
on the thrombus, most commonly from the M1 segment of the
middle cerebral artery to the proximal cervical internal carotid
artery. Not only was this a long distance to travel, but also the
vector force applied while pulling on the thrombus was subopti-
mal (downwards along the long axis of the cervical carotid artery,
not horizontally along the axis of the middle cerebral artery). This
caused considerable torqueing of the parent vessel and presented a
biomechanical disadvantage to thrombus removal.

Revascularization rates in the Merci studies range from 43%
to 55%.23–25 However, thrombectomy with the Merci device as
frontline therapy was not associated with a higher percentage of
good functional outcomes (defined as modified Rankin Scale
score ≤2 at 90 days), reported in up to 36% of patients.25

Recanalization rates with the Merci system are thought to have
increased since the initial trial from design refinements as well
as increased operator experience.26

A landmark advancement came in 2010 with the approval of
the Outreach Distal Access Catheter (DAC; Concentric
Medical), which would have repercussions for the application
of the Merci device and also for future iterations of thrombec-
tomy approaches. The DAC was designed for the purpose of
buttressing access for the Merci thrombectomy device, affording
stable access to the target vessel. Use of the DAC optimized the
vectors at play during pulling of the device. With further under-
standing of clot fragmentation and distal embolization, the DAC
was used as an intermediate aspiration device which aided in
preventing showering of distal emboli during clot retrieval,
increased the aspiration power applied directly to the throm-
bus.27 28 The development of large-bore flexible catheters that
could be delivered into the intracranial circulation represented a
major advancement in thrombectomy technology and also in

intermediate catheter technology.28 29 The DAC has a flexible
distal shaft with increased proximal shaft strength and axial
load-bearing characteristics as well as good hoop strength,
allowing it to be delivered to the intracranial circulation around
the ophthalmic bend when navigated over a coaxial catheter
system. A major drawback to the Merci retrieval system was that
it necessitated navigating past the ophthalmic bend with every
pass, decreasing the efficiency of the system and adding to pro-
cedure times.

The EKOS MicroLysUS catheter
The EKOS microcatheter system (Bothwell, Washington, USA) and
family of devices were designed to provide ultrasonic vibration to
facilitate thrombolysis. Earlier studies employed a 2.5 F infusion
catheter with an ultrasound-generating 2 mm transducer ring.30

The current EndoWave System (Bothwell) is a 5.2 F 106 cm long
device using ultrasonic waves delivered via core wire and designed
to be used in conjunction with intra-arterial tPA.31 Data regarding
this device remain limited, but further development and experi-
ence may prove the approach beneficial.

Second generation: Penumbra aspiration system
The Penumbra aspiration system introduced in 2008 involves
maceration of the thrombus with a separator which is repeatedly
introduced and withdrawn from the thrombus under direct
aspiration to prevent showering of fragments.32 While the
Merci system relied primarily on a delivery microcatheter (the
18 L; Stryker, Kalamazoo, Michigan, USA) to the site of occlu-
sion, the Penumbra aspiration system relied on the delivery of a
relatively large-bore catheter to the thrombus which ranges up
to effectively a 5 F device. The introduction of highly-flexible
lubricious polymers with good hoop strength allowed for place-
ment of large intermediate class catheters directly into the circle
of Willis. While the later introduction of the DAC catheter
resulted in similar catheter profiles in the distal vasculature, the
development of large-bore flexible catheters was essential to the
function of the Penumbra system.

The original iteration of the Penumbra reperfusion catheter
system included several different sized catheters (internal diam-
eter 026, 032, and 041) and accompanying separators to maxi-
mize clot interaction and force of aspiration in vessels of
differing diameters (internal carotid artery terminus, M1, M2,
M3) to address both proximal and distal thrombi.33 The largest
device had a lumen diameter of 0.041 inch and it tracked sub-
optimally and required a median 45 min to achieve acceptable
recanalization. In 2009 the Reperfusion Catheter 054 became
available which dramatically improved the aspiration efficiency
to a median 20 min34 due to its much larger tapered lumen.
The aspiration force is proportional to the square of the diam-
eter of the catheter, so the 054 catheter provided an estimated
4×aspiration force over the next smaller catheter, the 041.34

Despite the improved technology, the 054 still required a
coaxial catheter for delivery to the middle cerebral artery.
Although a larger catheter lumen provides higher suction and
more rapid removal of material, it also results in a larger cath-
eter profile and more difficult distal navigation. Owing to its
size, the 054 catheter often required the use of a coaxial tech-
nique to facilitate navigation to the site of occlusion. When
navigated over a 0.014 inch microwire alone, a significant ledge
would get held up at the origin of the ophthalmic artery. To
overcome this obstacle to the target lesion, access with the 054
catheter can be optimized with a coaxial technique (figure 1).
The smaller 032 and 026 reperfusion catheters can be delivered
simply over either a 0.014 or 0.016 inch wire and the larger
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054 delivered over those. One of the major advantages of the
Penumbra aspiration system was that, once the catheter system
was delivered to the target vessel, separator clot maceration
could be performed without having to re-access (additional
‘passes’), as was the case for the Merci device.35

Despite these advances in catheter technology, navigating past
the carotid siphon was still a relative challenge to thrombectomy
cases. In patients with very acute angulation in the ophthalmic
segment, adjunctive techniques could be performed to obtain
the necessary distal access. One approach used the Merci
retriever system as an adjunct to improve the trackability of the
054 reperfusion catheter by altering the angle with which the
catheter engages the ophthalmic segment and M1 origin. By
deploying an appropriately-sized Merci Retriever (Concentric
Medical), such as a V.2.0 or V.2.5 soft, in the mid M1 segment
through either the 032 catheter or an 18 L microcatheter and
then applying gentle traction on the Merci Retriever, the course
of the wire straightens, approximating the inner curve of the
vasculature, pulling the catheter complex away from the ledge
of the vessel origins (‘grappling hook’ technique), 28 36 an

approach now used routinely using stent retrievers and inter-
mediate catheters. The 054 catheter can then be more readily
advanced into the target vessel. Once the 054 reperfusion cath-
eter is in place, the retriever is resheathed into the 18 L micro-
catheter and then removed prior to separator placement and
aspiration.

The next iteration of the Penumbra aspiration catheter family
(Max series) was introduced in 2012 and included larger inner
diameters at the distal end as well as the proximal end to
increase the aspiration power. The larger proximal lumen
reduces resistance to flow and therefore increases aspiration
force at the catheter tip. Improvements in polymer and braid/
ring reinforcement provide more catheter tip flexibility and an
increased number of transition zones to improve trackability.
The newly introduced intermediate catheters were named
5Max, 4Max and 3Max. An increased number of transition
zones in the catheter design and manufacturing allowed these
catheters to be delivered primarily over either a 0.014 or
0.016 inch microwire, even past the ophthalmic origin.

Third generation: stent retrievers
The next generation of mechanical thrombectomy devices
includes the ‘stent retriever’ family: Solitaire (ev3 Endovascular,
Plymouth, Minnesota, USA), Trevo Pro (Stryker Neurovascular,
Kalamazoo Michigan, USA) and arguably the Penumbra 3D sep-
arator (Penumbra, Alameda, California, USA)). The formal stent
retrievers are literally stents that are fully recapturable and fused
to the delivery microwire. Differences in cell design and lubri-
city and end portion variations have also been introduced in
pre-market stent retrievers and are beyond the scope of this
article. The Penumbra 3D separator differs from formal stent
retrievers in that there is no stent. A larger portion of the separ-
ator design by mass is designed to engage at the center of the
vessel lumen rather than in an actual stent where the material is
primarily at the outer margins of the vessel near the intima.
These devices have the advantage of efficacious recanalization
like a stent but are able to be removed, which obviates the need
for clopidogrel and aspirin. While the Solitaire was the first to
be released, all major device manufacturers produce similar
devices.37 Stent retrievers capitalize on the advantages observed
with partial stent deployment and recapture during thrombec-
tomy. The microcatheter is delivered across the thrombus and
the stent retriever is unsheathed from within the thrombus
itself. The outward radial force of the stent retriever as it
deploys promotes engaging the clot. While doing so, cerebral
blood flow to the involved territory is temporarily restored,
functioning as an ‘endovascular bypass’. Once the stent retriever
has engaged the thrombus, it is pulled back (‘retrieved’) into a
guide catheter. Application of suction with either a pump or
manual syringe aspiration during retrieval may promote clot
purchase and reduce the showering of emboli.

To minimize the distance the stent retriever must travel while
engaging the thrombus, especially into larger caliber vasculature
such as the internal carotid artery from the middle cerebral
artery, and mitigating the possibility of losing purchase of the
clot, variations to the stent retriever technique have been
employed with incorporation of Penumbra reperfusion cathe-
ters. For example, a 5Max catheter can be advanced over an
025 microcatheter and microwire up to the site of occlusion
and left at the face of the thrombus. The stent retriever is then
deployed and the microcatheter is removed, leaving the stent
retriever in place. The Stent retriever is then pulled directly into
the 5Max while maintaining aspiration (so-called ‘Solumbra’
technique since it combines a stent retriever (Solitaire) with a

Figure 1 (A) While a larger catheter lumen provides higher suction
and more rapid removal of thrombus, it results in a larger catheter
profile and ‘ledge effect’ which renders navigation past the ophthalmic
artery origin challenging. (B) To overcome this obstacle, access with an
intermediate catheter is optimized with a coaxial technique resulting in
a more tapered construct that minimizes the ‘ledge effect’.
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Penumbra aspiration catheter), and both are removed together,
much in the same way as the Merci retriever device was
removed with a DAC. Recanalization rates with stent retrievers
were found to be superior to the Merci device in several
studies,37 38 leading to rapid and widespread adoption.

New generation: direct aspiration
Direct aspiration has become possible due to advances in cath-
eter technology that allow large-caliber aspiration catheters to
be advanced intracranially to the thrombus. In general, the
largest size aspiration catheter that the vessel can accommodate
should be used. At our institution this is most commonly a
Penumbra 5Max reperfusion catheter (Penumbra, Oakland,
California, USA) for M1 or carotid terminus occlusions. The
5Max can be advanced to the level of the thrombus over any
microcatheter and microwire the operator choses, but most
commonly a Velocity microcatheter (Penumbra) over a
0.016 inch Fathom wire (Boston Scientific Corp, Naidich,
Massachusetts, USA). The microcatheter and wire are removed
and aspiration is applied by either a 20 or 60 mL syringe or use
of the Penumbra aspiration pump that is part of the Penumbra
thrombectomy/aspiration system.33 Inability to draw back on
aspiration confirms the optimal position of the 5Max catheter
abutting the thrombus. More recently, an alternative technique
has been used where the catheter is slightly advanced to ensure
firm engagement with the thrombus. The 5Max catheter is then
slowly withdrawn while maintaining aspiration. Aspiration is

also applied to the sideport of the guide catheter to prevent dis-
lodging the thrombus from the 5Max aperture as it is with-
drawn into the sheath. In smaller caliber vessels, the technique
can be employed with either a 4Max or 3Max reperfusion cath-
eter (Penumbra). When this technique is successful it eliminates
the need to introduce stent retriever or Penumbra separator
devices, leading to an overall much lower procedure device
cost.39 Thus, we have found the initial application of this tech-
nique to provide the highest cost-effective value in acute stroke
treatment.

This approach was facilitated by the development of the
Penumbra Max aspiration catheter technology which signifi-
cantly increased the ease and speed of navigation of a large-bore
catheter into the intracranial circulation. The direct aspiration
technique differs from previous thrombectomy methods as it
focuses on engaging and removing the clot in its entirety rather
than the use of the separator that was designed to macerate the
thrombus and clear the tip of the aspiration catheter.40

Historically, due to the challenges with tracking an aspiration
catheter into the intracranial circulation, catheters had to be tel-
escoped with other catheters together or other tricks employed
to advance through the siphon.28 2936 41 42 However, the
superior trackability of the new trackable large-bore aspiration
catheters (eg, Penumbra 5Max) has given us the confidence to
attempt direct aspiration alone without the fear that it will be a
significant time and danger impediment to the patient if intra-
cranial access is lost. Perhaps most importantly, if aspiration

Figure 2 Timeline of the release dates of the major devices relating to stroke thrombectomy.
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alone is not successful at revascularizing the occluded vessel, the
large-bore aspiration catheters can function as a direct distal
conduit for other devices such as stent retrievers, balloons or
stents.

The newest iteration, the 5Max ACE (introduced in June
2013) with 12 transition zones has an increased inner diameter
of 0060 at the distal 30 cm, while housing a 0.068 proximal
end for larger aspiration forces. At the time of writing, early
ADAPT experience with retrospective and prospective data is
very encouraging and includes a patient sample size as large as
the SWIFT and TREVO 2 trials (presented at the World
Federation of Interventional and Therapeutic Neuroradiology,
Buenos Aires, 2013).

FUTURE DEVICES
On-label intra-arterial devices for acute stroke intervention are
developing rapidly with the introduction of both iterative
changes and new classes of devices (figure 2). With new genera-
tions of devices, increasingly high rates of recanalization are
being reported (table 1). It is likely that new techniques and
devices will continue to evolve, offering a more robust tool set
and combination of devices for interventional management of
acute stroke. However, futile recanalization remains a
problem.43 The development of ever more efficient intra-arterial

Table 1 Comparison of the results of clinical trials employing
different devices for mechanical thrombectomy for acute ischemic
stroke

Trial

Merci
2002–
20071 2

Penumbra
2007–
20093 4

SWIFT5

2012
TREVO
20126

Patients 1511

1642
1253

1574
895 886

Mean NIHSS 20.11

192
17.63

16.64
17.45 18.36

Symptom onset to treatment (h) 4.31

4.32
4.33

4.14
4.85 4.66

Treatment onset to recanalization
time (min)

1261

962
453

414
36*5 44*6

Procedure complication (%) 131

9.82
12.83

5.84
15.75 156

Mortality at 90 days (%) 43.51

342
333

204
175 336

mRS ≤2 at 90 days (%) 27.71

362
253

414
365 406

Recanalization rate (%) 481

682
823

874
615 86.46

*Recanalization time defined as the time from baseline guide catheter run to
visualization of Thrombolysis In Myocardial Infarction (TIMI).
mRS, modified Rankin Scale; NIHSS, NIH Stroke Scale.

Figure 3 Illustration depicting the major steps in evolution of thrombectomy devices, beginning from the first-generation concept to
state-of-the-art approaches.
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approaches may provide the appropriate interventional
approaches to appropriately selected patients.

CONCLUSIONS
There have been rapid advances in thrombectomy devices and
approaches over the past decade, from rudimentary mechanical
disruption followed by intra-arterial thrombolytic infusions to
increasingly effective thrombectomy devices (figure 3). While it
remains unknown what combinations of techniques, devices,
selection criteria and medicines will yield the best outcomes,
ongoing improvements in the devices and techniques are yield-
ing improved angiographic and clinical outcomes. Device tech-
nology, selection strategies and medical management will
probably evolve in tandem, and we look forward to the contin-
ued evolution of thrombectomy approaches for acute stroke in
the future. We remind our colleagues in the neurointerventional
field that high enrollment in clinical trials will be required to
secure the role of intra-arterial therapy in the management of
stroke.
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