Skip to main content

Advertisement

Log in

Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The deposition of intralumenal thrombus in intracranial aneurysms adds a risk of thrombo-embolism over and above that posed by mass effect and rupture. In addition to biochemical factors, hemodynamic factors that are governed by lumenal geometry and blood flow rates likely play an important role in the thrombus formation and deposition process. In this study, patient-specific computational fluid dynamics (CFD) models of blood flow were constructed from MRA data for three patients who had fusiform basilar aneurysms that were thrombus free and then proceeded to develop intralumenal thrombus. In order to determine whether features of the flow fields could suggest which regions had an elevated potential for thrombus deposition, the flow was modeled in the baseline, thrombus-free geometries. Pulsatile flow simulations were carried out using patient-specific inlet flow conditions measured with MR velocimetry. Newtonian and non-Newtonian blood behavior was considered. A strong similarity was found between the intra-aneurysmal regions with CFD-predicted slow, recirculating flows and the regions of thrombus deposition observed in vivo in the follow-up MR studies. In two cases with larger aneurysms, the agreement between the low velocity zones and clotted-off regions improved when non-Newtonian blood behavior was taken into account. A similarity was also found between the calculated low shear stress regions and the regions that were later observed to clot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Burleson A., C. Strother, V. Turitto 1995 Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 37(4), 774–784, doi:10.1097/00006123-199510000-00023

    Article  PubMed  CAS  Google Scholar 

  2. Castro M. A., C. M. Putman, J. R. Cebral 2006 Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am. J. Neuroradiol. 27, 1703–1709

    PubMed  CAS  Google Scholar 

  3. Cebral J. R., M. A. Castro, S. Appanaboyina, et al. 2005 Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4), 457–467, doi:10.1109/TMI.2005.844159

    Article  PubMed  Google Scholar 

  4. Chaturani P., R. P. Samy 1985 A study of non-Newtonian aspects of blood flow through stenosed arteries and its applications in arterial diseases. Biorheology 22, 521–531

    PubMed  CAS  Google Scholar 

  5. Choi H. W., A. I. Barakat 2005 Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step. Biorheology 42, 493–509

    PubMed  Google Scholar 

  6. Hassan T., M. Ezura, E. V. Timofeev, et al. 2004 Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25, 63–68

    PubMed  Google Scholar 

  7. Humphrey J. D., S. Na 2002 Elastodynamics and arterial wall stress. Ann. Biomed. Eng. 30, 509–523, doi:10.1114/1.1467676

    Article  PubMed  CAS  Google Scholar 

  8. Imbesi S. G., C. W. Kerber 2001 Analysis of slipstream flow in a wide-necked basilar artery aneurysm: evaluation of potential treatment regimes. AJNR Am. J. Neuroadiol. 22, 721–724

    CAS  Google Scholar 

  9. Johnston B. M., P. R. Johnston, S. Corney, D. Kilpatrick 2006 Non-Newtonian blood flow in human right coronary arteries: transient simulations. J. Biomech. 39, 1116–1128, doi:10.1016/j.jbiomech.2005.01.034

    Article  PubMed  Google Scholar 

  10. Jou L. D., G. Wong, B. Disensa, et al. 2005 Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms. AJNR Am. J. Neuroradiol. 26, 2357–2363

    PubMed  Google Scholar 

  11. Kerber C. W., S. T. Hecht, K. Knox, et al. 1996 Flow dynamics in a fatal aneurysm of the basilar artery. AJNR Am. J. Neuroradiol. 17, 1417–1421

    PubMed  CAS  Google Scholar 

  12. Kim, S. A study of non-Newtonian viscosity and yield stress of blood in a scanning capillary-tube rheometer. Drexel University, 2002

  13. Liepsch D. W. Effect of flood flow parameters on flow patterns at arterial bifurcations studies in models. In Liepsch D. W., ed. Blood Flow in Large Arteries: Applications to Atherogenesis and Clinical Medicine. Monographs on Atherosclerosis, Vol. 15. Basel: Karger, 1990. pp. 63–76

    Google Scholar 

  14. Long Q., X. Y. Xu, B. Ariff, et al. 2000 Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J. Magn. Reson. Imaging 11, 299–311, doi:10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  15. Long Q., X. Y. Xu, M. Bourne, T. M. Griffith 2000 Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn. Reson. Med. 43, 565–576, doi:10.1002/(SICI)1522-2594(200004)43:4<565::AID-MRM11>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  16. Long Q., X. Y. Xu, M. W. Collins, et al. 1998 The combination of magnetic resonance angiography and computational fluid dynamics: a critical review. Crit. Rev. Biomed. Eng. 26, 227–274

    PubMed  CAS  Google Scholar 

  17. Low M., K. Perktold, R. Raunig 1993 Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. Biorheology 30, 287–298

    PubMed  CAS  Google Scholar 

  18. Mantha A., C. Karmonik, G. Benndorf, et al. 2006 Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27, 1113–1118

    PubMed  CAS  Google Scholar 

  19. Perktold K., R. Peter, M. Resch 1989 Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26, 1011–1030

    PubMed  CAS  Google Scholar 

  20. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, et al. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130, 2008. doi:10.1115/1.2970056.

  21. Rayz V. L., M. T. Lawton, A. J. Martin, et al. 2008 Numerical simulation of pre- and post-surgical flow in a giant basilar aneurysm. J. Biomech. Eng. 130, 021004, doi:10.1115/1.2898833

    Article  PubMed  Google Scholar 

  22. Steiger H., A. Poll, D. Liepsch, H. Reulen 1987 Basic flow structure in saccular aneurysms: a flow visualization study. Heart Vessels 3, 55–65. doi:10.1007/BF02058520

    Article  PubMed  CAS  Google Scholar 

  23. Steiger H. J., A. Poll, D. Liepsch, H. J. Reulen 1987 Hemodynamic stress in lateral saccular aneurysms. Acta Neurochir (Wien) 86, 98–105, doi:10.1007/BF01402292

    Article  CAS  Google Scholar 

  24. Steinman D. A. 2002 Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30, 483–497. doi:10.1114/1.1467679

    Article  PubMed  Google Scholar 

  25. Steinman D. A., J. S. Milner, C. J. Norley, et al. 2003 Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroadiol. 24, 559–566

    Google Scholar 

  26. Stroud J. S., S. A. Berger, D. Saloner 2002 Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124, 9–20, doi:10.1115/1.1427042

    Article  PubMed  CAS  Google Scholar 

  27. Tateshima S., Y. Murayama, J. P. Villablanca, et al. 2001 Intraaneurysmal flow dynamics study featuring an acrylic aneurysm model manufactured using a computerized tomography angiogram as a mold. J. Neurosurg. 95, 1020–1027

    PubMed  CAS  Google Scholar 

  28. Tateshima S., K. Tanishita, H. Omura, et al. 2007 Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am. J. Neuroradiol. 28(4), 622–627

    PubMed  CAS  Google Scholar 

  29. Taylor C. A., M. T. Draney, J. P. Ku, et al. 1999 Predictive medicine: computational techniques in therapeutic decision-making. Comput. Aided Surg. 4, 231–247

    Article  PubMed  CAS  Google Scholar 

  30. Tu C., M. Deville 1996 Pulsatile flow of non-Newtonian fluids through arterial stenosis. J. Biomech. 29, 899–908, doi:10.1016/0021-9290(95)00151-4

    Article  PubMed  CAS  Google Scholar 

  31. Valencia A. A., A. M. Guzmán, E. A. Finol, C. H. Amon 2006 Blood flow dynamics in saccular aneurysm models of the basilar artery. J. Biomech. Eng. 128, 516–526. doi:10.1115/1.2205377

    Article  PubMed  Google Scholar 

  32. Valencia A., A. Zarate, M. Galvez, L. Badilla 2006 Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Methods Fluids 50, 751–764, doi:10.1002/fld.1078

    Article  Google Scholar 

  33. Wang K. C., R. W. Dutton, C. A. Taylor 1999 Improving geometric model construction for blood flow modeling. IEEE Eng. Med. Biol. Mag. 18, 33–39. doi:10.1109/51.805142

    Article  PubMed  CAS  Google Scholar 

  34. Zhao S. Z., X. Y. Xu, A. D. Hughes, et al. 2000 Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33, 975–984. doi:10.1016/S0021-9290(00)00043-9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.L. Rayz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayz, V., Boussel, L., Lawton, M. et al. Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation. Ann Biomed Eng 36, 1793–1804 (2008). https://doi.org/10.1007/s10439-008-9561-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9561-5

Keywords

Navigation