Skip to main content

Advertisement

Log in

Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Over the past 15 years, coil embolization has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than the long-standing convention of surgical clipping. However, aneurysm recurrence after coil embolization is not uncommon: recurrence rates as high as 50% have been reported in the literature. One factor that may contribute to recurrence after coiling is residual flow into the aneurysmal sac. At present, there is limited quantitative knowledge of the relationship between coil packing density and aneurysmal inflow. We present an in vitro fluid dynamic study of basilar tip aneurysm models that elucidates this relationship. At physiologically normal flow rates, we found that a packing density of 28.4% decreased aneurysmal inflow by 31.6% in a wide-neck model, and that a packing density of 36.5% decreased aneurysmal inflow by 49.6% in a narrow-neck model. Results also indicated that coiling reduced aneurysmal inflow more significantly at lower parent vessel flow rates, and that coiling reduced neck-plane velocity magnitudes more significantly for narrow-neck aneurysms. Our study provides novel quantitative information that could ultimately contribute to improved outcomes for patients with cerebral aneurysms by enabling more effective coil embolization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7

Similar content being viewed by others

References

  1. Allen, B. T., C. B. Anderson, B. G. Rubin, R. W. Thompson, M. W. Flye, P. Young-Beyer, P. Frisella, and G. A. Sicard. The influence of anesthetic technique on perioperative complications after carotid endarterectomy. J. Vasc. Surg. 19:834–842, 1994.

    CAS  PubMed  Google Scholar 

  2. Boecher-Schwarz, H. G., K. Ringel, L. Kopacz, A. Heimann, and O. Kempski. Ex vivo study of the physical effect of coils on pressure and flow dynamics in experimental aneurysms. Am. J. Neuroradiol. 21:1532–1536, 2000.

    CAS  PubMed  Google Scholar 

  3. Brilstra, E., G. Rinkel, Y. V. D. Graaf, W. V. Rooij, and A. Algra. Treatment of intracranial aneurysms by embolization with coils: a systematic review. Stroke. 30:470–476, 1999.

    CAS  PubMed  Google Scholar 

  4. Brisman, J., J. Song, and D.Newell. Cerebral aneurysms. N. Engl. J. Med. 355:928–939, 2006.

    Article  CAS  PubMed  Google Scholar 

  5. Broderick, J. P., T. Brott, T. Tomsick, R. Miller, and G. Huster. Intracerebral hemorrhage more than twice as common as subarachnoid hemorrhage. J. Neurosurg. 78:188–191, 1993.

    Article  CAS  PubMed  Google Scholar 

  6. Byun, H., and K. Rhee. CFD modeling of blood flow following coil embolization of aneurysms. Med. Eng. Phys. 26:755–761, 2004.

    Article  PubMed  Google Scholar 

  7. Canton, G., D. Levy, and J. Lasheras. Changes in the intraaneurysmal pressure due to hydrocoil embolization. Am. J. Neuroradiol. 26:904–907, 2005.

    PubMed  Google Scholar 

  8. Cha, K., E. Balaras, B. Lieber, C. Sadasivan, and A. Wakhloo. Modeling the interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J. Biomech. Eng. 129:873–879, 2007.

    Article  PubMed  Google Scholar 

  9. Frakes, D., L. Dasi, K. Pekkan, H. Kitajima, K. Sundareswaran, A. Yoganathan, and M. Smith. A new method for registration-based medical image interpolation. IEEE Trans. Med. Imaging. 27:370–377, 2008.

    Article  PubMed  Google Scholar 

  10. Frakes, D., K. Pekkan, L. Dasi, H. Kitajima, D. Zelicourt, H. L. Leo, J. Carberry, K. Sundereswaran, H. Simon, and A. P. Yoganathan. Modified control grid interpolation for the volumetric reconstruction of fluid flows. Exp. Fluids. 45:987–997, 2008.

    Article  Google Scholar 

  11. Frakes, D. H., C. P. Conrad, T. M. Healy, J. W. Monaco, M. Fogel, S. Sharma, M. Smith, and A. P. Yoganathan. Application of an adaptive control grid interpolation technique to morphological vascular reconstruction. IEEE Trans. Biomed. Eng. 50:197–206, 2003.

    Article  PubMed  Google Scholar 

  12. Gobin, Y., J. Counord, P. Flaud, and J. Duffaux. In vitro study of haemodynamics in a giant saccular aneurysm model: influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36:530–536, 1994.

    Article  CAS  PubMed  Google Scholar 

  13. Hayakawa, M., Y. Murayama, G. R. Duckwiler, Y. P. Gobin, G. Guglielmi, and F. Viñuela. Natural history of the neck remnant of a cerebral aneurysm treated with the Guglielmi detachable coil system. J. Neurosurg. 94:561–568, 2000.

    Google Scholar 

  14. Higashida, R., B. J. Lahue, M. T. Torbey, L. N. Hopking, E. Leip, and D. F. Hanley. Treatment of unruptured intracranial aneurysms: a nationwide assessment of effectiveness. Am. J. Neuroradiol. 28:146–151, 2007.

    CAS  PubMed  Google Scholar 

  15. Imbesi, S. G., and C.W. Kerber. Analysis of slipstream flow in a wide-necked basilar artery aneurysm: evaluation of potential treatment regimens. Am. J. Neuroradiol. 22:721–724, 2001.

    CAS  PubMed  Google Scholar 

  16. Jou, L., A. Mohamed, D. Lee, and M. Mawad. 3D Rotational digital subtraction angiography may underestimate intracranial aneurysms: findings from two basilar aneurysms. Am. J. Neuroradiol. 28:1690–1692, 2007.

    Article  PubMed  Google Scholar 

  17. Jou, L., D. Saloner, and R. Higashida. Determining intra-aneurysmal flow for coiled cerebral aneurysms with digital fluoroscopy. Biomed. Eng. Appl. Basis Commun. 16:43–48, 2004.

    Article  Google Scholar 

  18. Liou, T., Y. Li, and W. Juan. Numerical and experimental studies on pulsatile flow in aneurysms arising laterally from a curved parent vessel at various angles. J. Biomech. 40:1268–1275, 2007.

    Article  PubMed  Google Scholar 

  19. Mantha, A. R., G. Benndorf, A. Hernandez, and R. W. Metcalfe. Stability of pulsatile blood flow at the ostium of cerebral aneurysms. J. Biomech. 42:1081–1087, 2009.

    Article  PubMed  Google Scholar 

  20. Mayberg, M., H. Batjer, R. Dacey, M. Diringer, E. C. Haley, L. L. Sternau, J. Torner, H. P. Admans, and W. Feinberg. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Circulation 90:2592–2605, 1994.

    CAS  PubMed  Google Scholar 

  21. Meckel, S., A. E. Stadler, F. Santini, E. W. Radu, D. A. Rifenacht, M. Markl, and S. G. Wetzel. In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3 T. Neuroradiology 50:473–484, 2008.

    Article  PubMed  Google Scholar 

  22. Mitsos, A., N. Kakalis, Y. Ventikos, and J. Byrne. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50:341–347, 2008.

    Article  PubMed  Google Scholar 

  23. Molyneux, A., R. Kerr, L. Yu, M. Clarke, M. Sneade, J. Yarnold, and P. Sandercock. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366:809–817, 2005.

    Article  PubMed  Google Scholar 

  24. Murayama, Y., Y. Nien, G. Duckwiler, Y. Gobin, R. Jahan, J. Frazee, N. Martin, and F. Vinuela. Guglielmi detachable coil embolization of cerebral aneurysms: 11 years’ experience. J. Neurosurg. 98:959–966, 2003.

    Article  PubMed  Google Scholar 

  25. Novak, P., R. Glikstein, and G. Mohr. Pulsation–pressure relationship in experimental aneurysms: observation of aneurysmal hysteresis. Neurol. Res. 18:377–382, 1996.

    CAS  PubMed  Google Scholar 

  26. Ogilvy, C. S. Neurosurgical clipping versus endovascular coiling of patients with ruptured intracranial aneurysms. Stroke 34:2540–2542, 2003.

    Article  PubMed  Google Scholar 

  27. Raymond, J., F. Guilbert, A. Weill, S. Georganos, L. Juravsky, A. Lambert, J. Lamoureux, M. Chagnon, and D. Roy. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 34:1398–1403, 2003.

    Article  PubMed  Google Scholar 

  28. Rinkel, G., M. Djibuti, A. Algra, and J. V. Gijn. Prevalence and risk of rupture of intracranial aneurysms a systematic review. Stroke 29:251–256, 1998.

    CAS  PubMed  Google Scholar 

  29. Roy, D., G. Milot, and J. Raymond. Endovascular treatment of unruptured aneurysms. Stroke 32:1998–2004, 2001.

    Article  CAS  PubMed  Google Scholar 

  30. Schievink, W. Intracranial aneurysms. N. Engl. J. Med. 336:28–40, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Sorteberg, A., W. Sorteberg, B. Aagaard, A. Rappe, and C. Strother. Hemodynamic versus hydrodynamic effects of Guglielmi detachable coils on intra-aneurysmal pressure and flow at varying pulse rate and systemic pressure. Am. J. Neuroradiol. 25:1049–1057, 2004.

    PubMed  Google Scholar 

  32. Sorteberg, A., W. Sorteberg, A. Rappe, and C. Strother. Effect of Guglielmi detachable coils on intraaneurysmal flow: experimental study in canines. Am. J. Neuroradiol. 23:288–294, 2002.

    PubMed  Google Scholar 

  33. Wakhloo, A., M. Gounis, J. Sandhu, N. Akkawi, A. Schenck, and I. Linfante. Complex-shaped platinum coils for brain aneurysms: higher packing density, improved biomechanical stability, and midterm angiographic outcome. Am. J. Neuroradiol. 28:1395–1400, 2007.

    Article  CAS  PubMed  Google Scholar 

  34. Wakhloo, A., B. Lieber, G. Canton, D. Levy, J. Lasheras, and C. Geindreau. Changes of intra-aneurysmal pressure during coiling. Am. J. Neuroradiol. 27:471–474, 2006.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank EV3 (Plymouth, MN, USA), and specifically Victoria Schuman, Ph.D., for their guidance and for the generous donation of embolic coils, balloons, and catheters that made this study possible. The authors also thank Hristo Nikolov, M.S. (Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Canada), for his valuable contributions to our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Haithem Babiker.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babiker, M.H., Gonzalez, L.F., Albuquerque, F. et al. Quantitative Effects of Coil Packing Density on Cerebral Aneurysm Fluid Dynamics: An In Vitro Steady Flow Study. Ann Biomed Eng 38, 2293–2301 (2010). https://doi.org/10.1007/s10439-010-9995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9995-4

Keywords

Navigation