Skip to main content
Log in

CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) has been used for several years to identify mechanical risk factors associated with aneurysmal evolution and rupture as well as to understand flow characteristics before and after surgical treatments in order to help the clinical decision making process. We used the keywords, “CFD” and “aneurysms” to search recent publications since about 2000, and categorized them into (i) studies of rupture risk factors and (ii) investigations of pre- and post-evaluations of surgical treatment with devices like coils and flow diverters (FD). This search enables us to examine the current status of CFD as a clinical tool and to determine if CFD can potentially become an important part of the routine clinical practice for the evaluation and treatment of aneurysms in near future. According to previous reports, it has been argued that CFD has become a quite robust non-invasive tool for the evaluation of surgical devices, especially in the early stages of device design and it has also been applied successfully to the study of rupture risk assessment. However, we find that due to the large number of pre-processing inputs further efforts of validation and reproducibility of CFD with larger clinical datasets are still essential to identify standardized mechanical risk factors. As a result, we identify the following needs to have a robust CFD tool for clinical use: (i) more reliability tests through validation studies, (ii) analyses of larger generalized clinical datasets to find converging universal risk parameters, (iii) fluid structure interaction (FSI) analyses to better understand the detailed vascular remodeling processes associated with aneurysm growth, evolution and rupture, and (iv) better coordinated and organized communications and collaborations between engineers and clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. AneuriskWeb project website, http://ecm2.mathcs.emory.edu/aneuriskweb. Emory University, Department of Math&CS, 2012.

  2. Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.

    PubMed  Google Scholar 

  3. Antiga, L., and D. A. Steinman. Rethinking turbulence in blood. Biorheology 46:77–81, 2009.

    PubMed  Google Scholar 

  4. Babiker, M. H., B. Chong, L. F. Gonzalez, S. Cheema, and D. H. Frakes. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J. Biomech. 46(16):2809–2816, 2013.

    PubMed  Google Scholar 

  5. Babiker, M. H., L. F. Gonzalez, J. Ryan, F. Albuquerque, D. Collins, A. Elvikis, and D. H. Frakes. Influence of stent configuration on cerebral aneurysm fluid dynamics. J. Biomech. 45(3):440–447, 2012.

    PubMed  Google Scholar 

  6. Bacigaluppi, S., M. Piccinelli, L. Antiga, A. Veneziani, T. Passerini, P. Rampini, M. Zavanone, P. Severi, G. Tredici, G. Zona, T. Krings, E. Boccardi, S. Penco, and M. Fontanella. Factors affecting formation and rupture of intracranial saccular aneurysms. Neurosurg. Rev. 37:1–14, 2014.

    CAS  PubMed  Google Scholar 

  7. Baek, H., M. V. Jayaraman, and G. E. Karniadakis. Wall shear stress and pressure distribution on aneurysms and infundibulae in the posterior communicating artery bifurcation. Ann. Biomed. Eng. 37(12):2469–2487, 2009.

    PubMed  Google Scholar 

  8. Baek, H., M. V. Jayaraman, P. D. Richardson, and G. E. Karniadakis. Flow instability and wall shear stress variation in intracranial aneurysms. J. R. Soc. Interface 7(47):967–988, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Berg, P., D. Stucht, G. Janiga, O. Beuing, O. Speck, and D. Thévenin. Cerebral blood flow in a healthy Circle of Willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J. Biomech. Eng. 136(4):041003, 2014.

    Google Scholar 

  10. Bordás, R., S. Seshadhri, G. Janiga, M. Skalej, and D. Thévenin. Experimental validation of numerical simulations on a cerebral aneurysm phantom model. Interv. Med. Appl. Sci. 4(4):193–205, 2012.

    PubMed Central  PubMed  Google Scholar 

  11. Byun, H. S., and K. Rhee. CFD modeling of blood flow following coil embolization of aneurysms. Med. Eng. Phys. 26(9):755–761, 2004.

    PubMed  Google Scholar 

  12. Castro, M. A., C. M. Putman, and J. R. Cebral. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamcis. AJNR 27:1703–1709, 2006.

    CAS  PubMed  Google Scholar 

  13. Castro, M. A., C. M. Putman, and J. R. Cebral. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images. Acad. Radiol. 13(7):811–821, 2006.

    PubMed  Google Scholar 

  14. Castro, M. A., C. M. Putman, M. J. Sheridan, and J. R. Cebral. Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am. J. Neuroradiol. 30:297–302, 2009.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Cavazzuti, M., M. Atherton, M. Collins, and G. Barozzi. Beyond the virtual intracranial stenting challenge 2007: non-Newtonian and flow pulsatility effects. J. Biomech. 43(13):2645–2647, 2010.

    PubMed  Google Scholar 

  16. Cavazzuti, M., M. A. Atherton, M. W. Collins, and G. S. Barozzi. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Proc. Inst. Mech. Eng. H 225(6):597–609, 2011.

    CAS  PubMed  Google Scholar 

  17. Cebral, J. R., M. A. Castro, J. E. Burgess, R. Pergolizzi, and C. M. Putman. Characterization of cerebral aneurysm for assessing risk of rupture using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26:2550–2559, 2005.

    PubMed  Google Scholar 

  18. Cebral, J. R., and M. Raschi. Suggested connections between risk factors of intracranial aneurysms: a review. Ann. Biomed. Eng. 41(7):1366–1383, 2013.

    PubMed Central  PubMed  Google Scholar 

  19. Cebral, J. R., and H. Meng. Counterpoint: realizing the clinical utility of computational fluid dynamics-closing the gap. AJNR Am. J. Neuroradiol. 33:396–398, 2012.

    CAS  PubMed  Google Scholar 

  20. Cebral, J. R., F. Mut, M. Raschi, E. Scrivano, R. Ceratto, P. Lylyk, and C. M. Putman. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am. J. Neuroradiol. 32(1):27–33, 2011.

    CAS  PubMed  Google Scholar 

  21. Cebral, J. R., F. Mut, D. Sforza, R. Löhner, E. Scrivano, P. Lylyk, and C. M. Putman. Clinical application of image-based CFD for cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27(7):977–992, 2011.

    Google Scholar 

  22. Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. Am. J. Neuroradiol. 32(2):264–270, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cebral, J. R., F. Mut, J. Weir, and C. Putman. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. Am. J. Neuroradiol. 32(1):145–151, 2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Cebral, J. R., R. S. Pergolizzi, Jr., and C. M. Putman. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography. Acad. Radiol. 14(7):804–813, 2007.

    PubMed  Google Scholar 

  25. Chien, A., S. Tateshima, M. Castro, J. Sayre, J. Cebral, and F. Viñuela. Patient-specific flow analysis of brain aneurysms at a single location: comparison of hemodynamic characteristics in small aneurysms. Med. Biol. Eng. Comput. 46(11):1113–1120, 2008.

    PubMed  Google Scholar 

  26. Dhar, S., M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N. Hopkins, and H. Meng. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63:185–197, 2008.

    PubMed Central  PubMed  Google Scholar 

  27. Dempere-Marco, L., E. Oubel, M. Castro, C. Putman, A. Frangi, and J. Cebral. CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms. Med. Image Comput. Comput. Assist. Interv. 9(2):438–445, 2006.

    PubMed  Google Scholar 

  28. Evju, Ø., K. Valen-Sendstad, and K. A. Mardal. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. J. Biomech. 46(16):2802–2808, 2013.

    PubMed  Google Scholar 

  29. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26:477–488, 2005.

    PubMed  Google Scholar 

  30. Ford, M. D., Y. Hoi, M. Piccinelli, L. Antiga, and D. A. Steinman. An objective approach to digital removal of saccular aneurysms: technique and applications. Br. J. Radiol. 82:S55–S61, 2009.

    PubMed  Google Scholar 

  31. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021015, 2008.

    PubMed  Google Scholar 

  32. Ford, M. D., G. R. Stuhne, H. N. Nikolov, D. F. Habets, S. P. Lownie, D. W. Holdsworth, and D. A. Steinman. Virtual angiography for visualization and validation of computational models of aneurysm hemodynamics. IEEE Trans. Med. Imaging 24(12):1586–1592, 2005.

    PubMed  Google Scholar 

  33. Fukasaku, K., M. Negoro, H. Iwase, K. Yokoi, and R. Himeno. Computational fluid dynamics for brain circulation and aneurysm with therapeutic devices. Interv. Neuroradiol. 10(Suppl 2):108–112, 2004.

    PubMed Central  PubMed  Google Scholar 

  34. Fukazawa, K., F. Ishida, Y. Umeda, Y. Miura, S. Shimosaka, S. Matsushima, W. Taki, and H. Suzuki. Using computational fluid dynamics analysis to characterize local hemodynamic features of middle cerebral artery aneurysm rupture points. World Neurosurg. pii:S1878-8750(13)00277-5, 2013.

  35. Gonzalez, C. F., Y. I. Choi, H. V. Ortega, and J. Moret. Intracranial aneurysms: flow analysis of their origin and progression. AJNR Am. J. Neuroradiol. 13:181–188, 1992.

    CAS  PubMed  Google Scholar 

  36. Goubergrits, L., J. Schaller, U. Kertzscher, N. van den Bruck, K. Poethkow, Ch Petz, H. C. Hege, and A. Spuler. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J. R. Soc. Interface 9:677–688, 2012.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Graziano, F., V. M. Russo, W. Wang, D. Khismatullin, and A. J. Ulm. 3D computational fluid dynamics of a treated vertebrobasilar giant aneurysm: a multistage analysis. Am. J. Neuroradiol. 34(7):1387–1394, 2013.

    CAS  PubMed  Google Scholar 

  38. Grinberg, L., D. A. Fedosov, and G. E. Karniadakis. Parallel multiscale simulations of a brain aneurysm. J. Comput. Phys. 244:131–147, 2013.

    PubMed Central  PubMed  Google Scholar 

  39. Hassan, T., M. Ezura, E. V. Timofeev, T. Tominaga, T. Saito, A. Takahashi, K. Takayama, and T. Yoshimoto. Computational simulation of therapeutic parent artery occlusion to treat giant vertebrobasilar aneurysm. AJNR Am. J. Neuroradiol. 25(1):63–68, 2004.

    PubMed  Google Scholar 

  40. Hademenos, G. J., and T. F. Massoud. Biophysical mechanisms of stroke. Stroke 28(10):2067–2077, 1997.

    CAS  PubMed  Google Scholar 

  41. Hodis, S., S. Uthamaraj, G. Lanzino, D. F. Kallmes, and D. Dragomir-Daescu. Computational fluid dynamics simulation of an anterior communicating artery ruptured during angiography. J. Neurointerv. Surg. 6(2):e14, 2014.

    PubMed  Google Scholar 

  42. Hodis, S., S. Uthamaraj, A. L. Smith, K. D. Dennis, D. F. Kallmes, and D. Dragomir-Daescu. Grid convergence errors in hemodynamic solution of patient-specific cerebral aneurysms. J. Biomech. 45:2907–2913, 2012.

    PubMed  Google Scholar 

  43. Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006.

    PubMed Central  PubMed  Google Scholar 

  44. Isaksen, J. G., Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner, and T. Ingebrigtsen. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172–3178, 2008.

    PubMed  Google Scholar 

  45. Isoda, H., Y. Ohkura, T. Kosugi, M. Hirano, M. T. Alley, R. Bammer, N. J. Pelc, H. Namba, and H. Sakahara. Comparison of hemodynamics of intracranial aneurysms between MR fluid dynamics using 3D cine phase-contrast MRI and MR-based computational fluid dynamics. Neuroradiology 52(10):913–920, 2010.

    PubMed Central  PubMed  Google Scholar 

  46. Kallmes, D. F. Point: CFD-computational fluid dynamics or confounding factor dissemination. AJNR Am. J. Neuroradiol. 33:395–396, 2012.

    CAS  PubMed  Google Scholar 

  47. Karmonik, C., G. Chintalapani, T. Redel, Y. J. Zhang, O. Diaz, R. Klucznik, and R. G. Grossman. Hemodynamics at the ostium of cerebral aneurysms with relation to post-treatment changes by a virtual flow diverter: a computational fluid dynamics study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013:1895–1898, 2013.

    PubMed  Google Scholar 

  48. Karmonik, C., R. Klucznik, and G. Benndorf. Comparison of velocity patterns in an AComA aneurysm measured with 2D phase contrast MRI and simulated with CFD. Technol. Health Care 16:119–128, 2008.

    PubMed  Google Scholar 

  49. Karmonik, C., C. Yen, O. Diaz, R. Klucznik, R. G. Grossman, and G. Benndorf. Temporal variations of wall shear stress parameters in intracranial aneurysms-importance of patient-specific inflow waveforms for CFD calculations. Acta Neurochir. 152:1391–1398, 2010.

    PubMed  Google Scholar 

  50. Karmonik, C., C. Yen, E. Gabriel, S. Partovi, M. Horner, Y. J. Zhang, R. P. Klucznik, O. Diaz, and R. G. Grossman. Quantification of speed-up and accuracy of multi-CPU computational flow dynamics simulations of hemodynamics in a posterior communicating artery aneurysm of complex geometry. J. Neurointerv. Surg. 5(Suppl 3):iii48–55, 2013.

  51. Kim, M., C. Ionita, R. Tranquebar, K. R. Hoffmann, D. B. Taulbee, H. Meng, and S. Rudin. Evaluation of an asymmetric stent patch design for a patient specific intracranial aneurysm using Computational Fluid Dynamic (CFD) calculations in the Computed Tomography (CT) derived lumen. Proc. Soc. Photo Opt. Instrum. Eng. 6143. pii:61432G, 2006.

  52. Koebbe, C. J., E. Veznedaroglu, P. Jabbour, and R. H. Rosenwasser. Endovascular management of intracranial aneurysms: current experience and future advances. Neurosurgery 59(5 Suppl 3):S93–S102; discussion S3–13. Review, 2006.

  53. Kono, K., and T. Terada. Hemodynamics of 8 different configurations of stenting for bifurcation aneurysms. AJNR Am. J. Neuroradiol. 34(10):1980–1986, 2013.

    CAS  PubMed  Google Scholar 

  54. Kono, K., and T. Terada. Treatment strategy and follow-up evaluation for an unruptured anterior communicating artery aneurysm associated with pseudo-occlusion of the internal carotid artery using computational fluid dynamics simulations. Turk. Neurosurg. 24(1):111–116, 2014.

    PubMed  Google Scholar 

  55. Kono, K., N. Tomura, R. Yoshimura, and T. Terada. Changes in wall shear stress magnitude after aneurysm rupture. Acta Neurochir. Wien 155(8):1559–1563, 2013.

    PubMed  Google Scholar 

  56. Kulcsár, Z., L. Augsburger, P. Reymond, V. M. Pereira, S. Hirsch, A. S. Mallik, J. Millar, S. G. Wetzel, I. Wanke, and D. A. Rüfenacht. Flow diversion treatment: intra-aneurismal blood flow velocity and WSS reduction are parameters to predict aneurysm thrombosis. Acta Neurochir. Wien 154(10):1827–1834, 2012.

    PubMed  Google Scholar 

  57. Kurokawa, Y., S. Abiko, and K. Watanabe. Noninvasive detection of intracranial vascular lesions by recording blood flow sounds. Stroke 25:397–402, 1994.

    CAS  PubMed  Google Scholar 

  58. Larrabide, I., M. L. Aguilar, H. G. Morales, A. J. Geers, Z. Kulcsár, D. A. Rüfenacht, and A. F. Frangi. Intra-aneurysmal pressure and flow changes induced by flow diverters: relation to aneurysm size and shape. AJNR Am. J. Neuroradiol. 34(4):816–822, 2013.

    CAS  PubMed  Google Scholar 

  59. Larrabide, I., M. Kim, L. Augsburger, M. C. Villa-Uriol, D. Rüfenacht, and A. F. Frangi. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16(3):721–730, 2012.

    PubMed  Google Scholar 

  60. Lauric, A., J. Hippelheuser, A. D. Cohen, L. M. Kadasi, and A. M. Malek. Wall shear stress association with rupture status in volume matched sidewall aneurysms. J. NeuroIntervent. Surg. 0:1–8, 2013.

  61. Lee, C. J., Y. Zhang, H. Takao, Y. Murayama, and Y. Qian. A fluid-structure interaction study using patient-specific ruptured and unruptured aneurysm: the effect of aneurysm morphology, hypertension and elasticity. J. Biomech. 46(14):2402–2410, 2013.

    CAS  PubMed  Google Scholar 

  62. Lieber, B. B., and C. Sadasivan. Endoluminal scaffolds for vascular reconstruction and exclusion of aneurysms from the cerebral circulation. Stroke 41(10 Suppl.):S21–S25, 2010.

    PubMed Central  PubMed  Google Scholar 

  63. Liou, T. M., and S. N. Liou. A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. Repub. China B 23(4):133–148, 1999.

    CAS  PubMed  Google Scholar 

  64. Lu, G., L. Huang, X. L. Zhang, S. Z. Wang, Y. Hong, Z. Hu, and D. Y. Geng. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR Am. J. Neuroradiol. 32(7):1255–1261, 2011.

    CAS  PubMed  Google Scholar 

  65. Ma, D., G. F. Dargush, S. K. Natarajan, E. I. Levy, A. H. Siddiqui, and H. Meng. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J. Biomech. 45(13):2256–2263, 2012.

    PubMed  Google Scholar 

  66. Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27:1113–1118, 2006.

    CAS  PubMed  Google Scholar 

  67. Marzo, A., P. Singh, I. Larrabide, A. Radaelli, S. Coley, M. Gwilliam, I. D. Wilkinson, P. Lawford, P. Reymond, U. Patel, A. Frangi, and D. R. Hose. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39(2):884–896, 2011.

    PubMed  Google Scholar 

  68. Mitsos, A. P., N. M. Kakalis, Y. P. Ventikos, and J. V. Byrne. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50(4):341–347, 2008.

    PubMed  Google Scholar 

  69. Morales, H. G., I. Larrabide, A. J. Geers, L. San Román, J. Blasco, J. M. Macho, and A. F. Frangi. A virtual coiling technique for image-based aneurysm models by dynamic path planning. IEEE Trans. Med. Imaging 32(1):119–129, 2013.

  70. Morales, H. G., I. Larrabide, A. J. Geers, M. L. Aguilar, and A. F. Frangi. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. J. Biomech. 46(13):2158–2164, 2013.

    PubMed  Google Scholar 

  71. Mut, F., R. Löhner, A. Chien, S. Tateshima, F. Viñuela, C. M. Putman, and J. R. Cebral. Computational hemodynamics framework for the analysis of cerebral aneurysms. Int. J. Numer. Methods Biomed. Eng. 27(6):822–839, 2011.

    Google Scholar 

  72. Mut, F., M. Raschi, E. Scrivano, C. Bleise, J. Chudyk, R. Ceratto, P. Lylyk, and J. R. Cebral. Association between hemodynamic conditions and occlusion times after flow diversion in cerebral aneurysms. J. NeuroIntervent. Surg. 0:1–5, 2014.

  73. Omodaka, S., S. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, T. Hayase, A. Takahashi, and T. Tominaga. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc. Dis. 34(2):121–129, 2012.

    PubMed  Google Scholar 

  74. Onishi, Y., K. Aoki, K. Amaya, T. Shimizu, H. Isoda, Y. Takehara, H. Sakahara, and T. Kosugi. Accurate determination of patient-specific boundary conditions in computational vascular hemodynamics using 3D cine phase-contrast MRI. Int. J Numer. Methods Biomed. Eng. 29(10):1089–1103, 2013.

    CAS  Google Scholar 

  75. Ortega, H. V. Computer simulation helps predict cerebral aneurysms. J. Med. Eng. Technol. 22(4):179–181, 1998.

    CAS  PubMed  Google Scholar 

  76. Passerini, T., L. M. Sangalli, S. Vantini, M. Piccinelli, S. Bacigaluppi, L. Antiga, E. Boccardi, P. Secchi, and A. Veneziani. An integrated statistical investigation of internal carotid arteries of patients affected by cerebral aneurysms. Cardiovasc. Eng. Technol. 3(1):26–40, 2012.

    Google Scholar 

  77. Pereira, V. M., O. Brina, A. Marcos Gonzales, A. P. Narata, P. Bijlenga, K. Schaller, K. O. Lovblad, and R. Ouared. Evaluation of the influence of inlet boundary conditions on computational fluid dynamics for intracranial aneurysms: a virtual experiment. J. Biomech. 46(9):1531–1539, 2013.

  78. Piccinelli, M., D. A. Steinman, Y. Hoi, F. Tong, A. Veneziani, and L. Antiga. Automatic neck plane detection and 3D geometric characterization of aneurysmal sacs. Ann. Biomed. Eng. 40(10):2188–2211, 2012.

    PubMed  Google Scholar 

  79. Piccinelli, M., A. Veneziani, D. A. Steinman, A. Remuzzi, and L. Antiga. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans. Med. Imaging 28(8):1141–1155, 2009.

    PubMed  Google Scholar 

  80. Polevaya, N. V., M. Y. Kalani, G. K. Steinberg, and V. C. Tse. The transition from hunterian ligation to intracranial aneurysm clips: a historical perspective. Neurosurg. Focus 20(6):E3, 2006.

    PubMed  Google Scholar 

  81. Qian, Y., H. Takao, M. Umezu, and Y. Murayama. Risk analysis of unruptured aneurysms using computational fluid dynamics technology: preliminary results. Am. J. Neuroradiol. 32(10):1948–1955, 2011.

    CAS  PubMed  Google Scholar 

  82. Qiu, X., Z. Fei, W. Wang, and Z. Cao. Numerical analysis on hemodynamics of cerebral aneurysm clip. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29(1):102–106, 111, 2012.

  83. Radae, A. G., lli, L. Augsburger, J. R. Cebral, M. Ohta, D. A. Rüfenacht, R. Balossino, G. Benndorf, D. R., Hose, A. Marzo, R. Metcalfe, P. Mortier, F. Mut, P. Reymond, L. Socci, B. Verhegghe, and A. F. Frangi. Reproducibility of haemodynamical simulations in a subject-specific stented aneurysm model-a report on the Virtual Intracranial Stenting Challenge 2007. J. Biomech. 41(10):2069–2081, 2008.

  84. Raschi, M., F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela, T. Tanoue, K. Tanishita, and J. R. Cebral. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Methods Biomed. Eng. 28:214–228, 2012.

    Google Scholar 

  85. Rayz, V. L., L. Boussel, G. Acevedo-Bolton, A. J. Martin, W. L. Young, M. T. Lawton, R. Higashida, and D. Saloner. Numerical simulations of flow in cerebral aneurysms: comparison of CFD results and in vivo MRI measurements. J. Biomech. Eng. 130(5):051011, 2008.

    PubMed  Google Scholar 

  86. Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208–H222, 2009.

    CAS  PubMed  Google Scholar 

  87. Robertson, A. M., and P. N. Watton. Computational fluid dynamics in aneurysm research: critical reflections, future directions. AJNR Am. J. Neuroradiol. 33:992–995, 2012.

    CAS  PubMed  Google Scholar 

  88. O’Rourke, M. J., and J. P. McCullough. A comparison of the measured and predicted flowfield in a patient-specific model of an abdominal aortic aneurysm. Proc. Inst. Mech. Eng. H 222(5):737–750, 2008.

    PubMed  Google Scholar 

  89. Russell, J. H., N. Kelson, M. Barry, M. Pearcy, D. F. Fletcher, and C. D. Winter. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery 73(6):1061–1068, 2013.

    PubMed  Google Scholar 

  90. Sangalli, L. M., P. Secchi, S. Vantini, and A. Veneziani. A case study in exploratory functional data analysis: geometrical features of the internal carotid artery. J. Am. Stat. Assoc. 104(485):37–48, 2009.

    CAS  Google Scholar 

  91. Sangalli, L. M., P. Secchi, S. Vantini, and V. Vitelli. Functional clustering and alignment methods with applications. CAIM. 1(1):205–224, 2010.

    Google Scholar 

  92. Sangalli, L. M., P. Secchi, S. Vantini, and V. Vitelli. K-mean alignment for curve clustering. Comput. Stat. Data Anal. 54:1219–1233, 2010.

    Google Scholar 

  93. Schneiders, J. J., S. P. Ferns, P. van Ooij, M. Siebes, A. J. Nederveen, R. van den Berg, J. van Lieshout, G. Jansen, E. vanBavel, and C. B. Majoie. Comparison of phase-contrast MR imaging and endovascular sonography for intracranial blood flow velocity measurements. AJNR Am. J. Neuroradiol. 33(9):1786–1790, 2012.

  94. Schneiders, J. J., H. A. Marquering, L. Antiga, R. van den Berg, E. VanBavel, and C. B. Majoie. Intracranial aneurysm neck size overestimation with 3D rotational angiography: the impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics. AJNR Am. J. Neuroradiol. 34(1):121–128, 2013.

    CAS  PubMed  Google Scholar 

  95. Schneiders, J. J., H. A. Marquering, R. van den Berg, E. VanBavel, B. Velthuis, G. J. E. Rinkel, and C. B. Majoie. Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3D imaging before and after rupture. AJNR Am. J. Neuroradiol. 2014. doi:10.3174/ajnr.A3866.

    Google Scholar 

  96. Seifert, V., H. A. Trost, and D. Stolke. Management morbidity and mortality in grade IV and V patients with aneurysmal subarachnoid haemorrhage. Acta Neurochir. Wien 103(1–2):5–10, 1990.

    CAS  PubMed  Google Scholar 

  97. Sforza, D. M., R. Löhner, C. Putman, and J. Cebral. Hemodynamic analysis of intracranial aneurysms with moving parent arteries: basilar tip aneurysms. Int. J. Numer. Methods Biomed. Eng. 26(10):1219–1227, 2010.

    Google Scholar 

  98. Sforza, D. M., C. M. Putman, E. Scrivano, P. Lylyk, and J. R. Cebral. Blood-flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture. AJNR Am. J. Neuroradiol. 31(6):1127–1131, 2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Shi, C., M. Kojima, H. Anzai, C. Tercero, S. Ikeda, M. Ohta, T. Fukuda, F. Arai, Z. Najdovski, M. Negoro, and K. Irie. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis. Int. J. Med. Robot. 9(2):213–222, 2013.

    PubMed  Google Scholar 

  100. Shimogonya, Y., T. Ishikawa, Y. Imai, N. Matsuki, and T. Yamaguchi. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J. Biomech. 42:550–554, 2009.

    PubMed  Google Scholar 

  101. Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita, and T. Kirino. Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505, 2004.

    PubMed  Google Scholar 

  102. Shojima, M., A. Morita, T. Kimura, M. Oshima, T. Kin, and N. Saito, Computational fluid dynamic simulation of a giant basilar tip aneurysm with eventual rupture following Hunterian ligation. World Neurosurg. pii: S1878-8750(13)01218-7, 2013.

  103. Singh, P. K., A. Marzo, S. C. Coley, G. Berti, P. Bijlenga, P. V. Lawford, M. Villa-Uriol, D. A. Rufenacht, K. M. McCormack, A. Frangi, U. J. Patel, and D. R. Hose. The role of computational fluid dynamics in the management of unruptured intracranial aneurysms: a clinicians’ view. Comput. Intell. Neurosci. 2009, Article ID 760364, 2009.

  104. Spiegel, M., T. Redel, Y. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A. Doerfler, and C. Karmonik. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation—a comparison. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:2787–2790, 2009.

    PubMed  Google Scholar 

  105. Spiegel, M., T. Redel, Y. J. Zhang, T. Struffert, J. Hornegger, R. G. Grossman, A. Doerfler, and C. Karmonik. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput. Methods Biomech. Biomed. Eng. 14(1):9–22, 2011.

    Google Scholar 

  106. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70:823–831, 1989.

    CAS  PubMed  Google Scholar 

  107. Steiger, H. J and H. J. Reulen. Low frequency flow fluctuations in saccular aneurysms. Acta Neurochir. Wien 83:131–137, 1986.

  108. Steinberg, G. K., C. G. Drake, and S. J. Peerless. Deliberate basilar or vertebral artery occlusion in the treatment of intracranial aneurysms. Immediate results and long-term outcome in 201 patients. J. Neurosurg. 79:161–173, 1993.

    CAS  PubMed  Google Scholar 

  109. Steinman, D. A., Y. Hoi, P. Fahy, L. Morris, M. T. Walsh, N. Aristokleous, A. S. Anayiotos, Y. Papaharilaou, A. Arzani, S. C. Shadden, P. Berg, G. Janiga, J. Bols, P. Segers, N. W. Bressloff, M. Cibis, F. H. Gijsen, S. Cito, J. Pallarés, L. D. Browne, J. A. Costelloe, A. G. Lynch, J. Degroote, J. Vierendeels, W. Fu, A. Qiao, S. Hodis, D. F. Kallmes, H. Kalsi, Q. Long, V. O. Kheyfets, E. A. Finol, K. Kono, A. M. Malek, A. Lauric, P. G. Menon, K. Pekkan, M. Esmaily Moghadam, A. L. Marsden, M. Oshima, K. Katagiri, V. Peiffer, Y. Mohamied, S. J. Sherwin, J. Schaller, L. Goubergrits, G. Usera, M. Mendina, K. Valen-Sendstad, D. F. Habets, J. Xiang, H. Meng, Y. Yu, G. E. Karniadakis, N. Shaffer, and F. Loth. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J. Biomech. Eng. 135(2):021016, 2013.

  110. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24:559–566, 2003.

    PubMed  Google Scholar 

  111. Strother, C. M., and J. Jiang. Intracranial aneurysms, cancer, X-rays, and computational fluid dynamics. AJNR Am. J. Neuroradiol. 33:991–992, 2012.

    CAS  PubMed  Google Scholar 

  112. Sun, Q., A. Groth, M. Bertram, I. Waechter, T. Bruijns, R. Hermans, and T. Aach. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms. Med. Phys. 37(9):5054–5065, 2010.

    PubMed  Google Scholar 

  113. Sun, Q., A. Groth, and T. Aach. Comprehensive validation of computational fluid dynamics simulations of in vivo blood flow in patient-specific cerebral aneurysms. Med. Phys. 39(2):742–754, 2012.

    PubMed  Google Scholar 

  114. Tanemura, H., F. Ishida, Y. Miura, Y. Umeda, K. Fukazawa, H. Suzuki, H. Sakaida, S. Matsushima, S. Shimosaka, and W. Taki. Changes in hemodynamics after placing intracranial stents. Neurol. Med. Chir. (Tokyo) 53(3):171–178, 2013.

    Google Scholar 

  115. Tremmel, M., J. Xiang, S. K. Natarajan, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Alteration of intra-aneurysmal hemodynamics for flow diversion using Enterprise and Vision stents. World Neurosurg. 74(2–3):306–315, 2010.

    PubMed Central  PubMed  Google Scholar 

  116. Valen-Sendstad, K., K. Mardal, M. Mortensen, B. A. P. Reif, and H. P. Langtangen. Direct numerical simulation of transitional flow in a patient-specific intracranial aneurysm. J. Biomech. 44:2826–2832, 2011.

    PubMed  Google Scholar 

  117. Valen-Sendstad, K., K. Mardal, and D. A. Steinman. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms. J. Biomech. 46:402407, 2013.

    Google Scholar 

  118. Valencia, A., P. Burdiles, M. Ignat, J. Mura, E. Bravo, R. Rivera, and J. Sordo. Fluid structural analysis of human cerebral aneurysm using their own wall mechanical properties. Comput. Math. Methods Med. 2013:293128, 2013.

    PubMed Central  PubMed  Google Scholar 

  119. Walcott, B. P., J. M. Pisapia, B. V. Nahed, K. T. Kahle, and C. S. Ogilvy. Early experience with flow diverting endoluminal stents for the treatment of intracranial aneurysms. J. Clin. Neurosci. 18(7):891–894, 2011.

    PubMed  Google Scholar 

  120. Wang, W., F. Graziano, V. Russo, A. J. Ulm, D. D. Kee, and D. B. Khismatullin. Giant intracranial aneurysm embolization with a yield stress fluid material: insights from CFD analysis. Biorheology 50(3–4):99–114, 2013.

    PubMed  Google Scholar 

  121. Wong, G. K., and W. S. Poon. Current status of computational fluid dynamics for cerebral aneurysms: the clinician’s perspective. J. Clin. Neurosci. 18(10):1285–1288, 2011.

    PubMed  Google Scholar 

  122. Xiang, J., M. Tremmel, J. Kolega, E. I. Levy, S. K. Natarajan, and H. Meng. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. J. Neurointerv. Surg. 4(5):351–357, 2012.

    PubMed  Google Scholar 

  123. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152, 2011.

    PubMed Central  PubMed  Google Scholar 

  124. Xiang, J., V. M. Tutino, K. V. Snyder, and H. Meng. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am. J. Neuroradiol. Rev. 2013. doi:10.3174/ajnr.A3710.

    Google Scholar 

  125. Zeng, Z., M. J. Durka, D. F. Kallmes, Y. Ding, and A. M. Robertson. Can aspect ratio be used to categorize intra-aneurysmal hemodynamics? A study of elastase induced aneurysms in rabbit. J. Biomech. 44(16):2809–2816, 2011.

    PubMed Central  PubMed  Google Scholar 

  126. Zeng, Z., D. F. Kallmes, M. J. Durka, Y. Ding, D. Lewis, R. Kadirvel, and A. M. Robertson. Sensitivity of CFD based hemodynamic results in rabbit aneurysm models to idealizations in surrounding vasculature. J. Biomech. Eng. 132(9):091009, 2010.

    PubMed Central  PubMed  Google Scholar 

  127. Zhang, Y. X., Q. S. Lu, and Z. P. Jing. Multilayer stents, a new progress in the endovascular treatment of aneurysms. Chin. Med. J. (Engl.) 126(3):536–541, 2013.

    Google Scholar 

  128. Zhang, Y., H. Takao, Y. Murayama, and Y. Qian. Propose a wall shear stress divergence to estimate the risks of intracranial aneurysm rupture. ScientificWorldJournal. 2013:508131, 2013.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Zhang, Y. S., X. J. Yang, S. Z. Wang, A. K. Qiao, J. L. Chen, K. Y. Zhang, Z. C. Liu, Y. J. Zhao, Y. Zhang, B. Luo, and C. H. Li. Hemodynamic effects of stenting on wide-necked intracranial aneurysms. Chin. Med. J. (Engl.) 123(15):1999–2003, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongjae Chung.

Additional information

Associate Editor Diego Gallo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, B., Cebral, J.R. CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann Biomed Eng 43, 122–138 (2015). https://doi.org/10.1007/s10439-014-1093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1093-6

Keywords

Navigation