Article Text
Abstract
Background and purpose Onyx embolization is a treatment for brain arteriovenous malformations (AVMs). However, multistage embolization usually involves the presence of radiodense Onyx cast from the previous sessions, which may influence the fluoroscopic radiation dose. We compared the fluoroscopic dose between the initial and final embolization sessions.
Materials and method From January 2014 to September 2016, 18 patients underwent multistage Onyx embolization (more than twice) for brain AVMs. The total fluoroscopic duration (minutes), dose–area product (DAP, Gy×cm2), and cumulative air kerma (CAK, mGy) of both the frontal and lateral planes were obtained. We compared the frontal and lateral fluoroscopic dose rates (dose/time) of the final embolization session with those of the initial session. The relationship between the injected Onyx volume and radiation dose was tested.
Results The initial and final procedures on the frontal plane showed significantly different fluoroscopic dose rates (DAP: initial 0.668 Gy×cm2/min, final 0.848 Gy×cm2/min, P=0.02; CAK: initial 12.7 mGy/min, final 23.1 mGy/min, P=0.007). Those on the lateral plane also showed a similar pattern (DAP: initial 0.365 Gy×cm2/min, final 0.519 Gy×cm2/min, P=0.03; CAK: initial 6.2 mGy/min, final 12.9 mGy/min, P=0.01). The correlation between the cumulative Onyx volume (vials) and radiation dose ratio of both planes showed an increasing trend (rho 0.4325–0.7053; P=0.0011–0.0730).
Conclusion Owing to the automatic exposure control function during fluoroscopy, successive Onyx embolization procedures increase the fluoroscopic radiation dose in multistage brain AVM embolization because of the presence of radiodense Onyx mass.
- angiography
- arteriovenous malformation
- liquid embolic material
- embolic
- intervention