Article Text
Abstract
Purpose To evaluate the accuracy of percutaneous fluoroscopic injection into the spinal cord of a spine phantom utilizing integrated navigational guidance from fused flat panel detector CT (FDCT) and MR datasets. Conventional and convection-enhanced delivery (CED) techniques were evaluated.
Materials and methods FDCT and MR datasets of a swine thoracic spine phantom were co-registered using an integrated guidance system and surface to spinal cord target trajectory planning was performed on the fused images. Under real-time fluoroscopic guidance with pre-planned trajectory overlay, spinal cord targets were accessed via a coaxial technique. Final needle tip position was compared with a pre-determined target on 10 independent passes. In a subset of cases, contrast was injected into the central spinal cord with a 25G spinal needle or customized 200 µm inner diameter step design cannula for CED.
Results Average needle tip deviation from target measured 0.92±0.5 mm in the transverse, 0.47±0.4 mm in the anterior-posterior, and 1.67±1.2 mm in the craniocaudal dimension for an absolute distance error of 2.12±1.12 mm. CED resulted in elliptical intramedullary diffusion of contrast compared with primary reflux observed with standard needle injection.
Conclusions These phantom feasibility data demonstrate a minimally invasive percutaneous approach for targeted injection into the spinal cord utilizing real-time fluoroscopy aided by overlay trajectories derived from fused MRI and FDCT data sets with a target error of 2.1 mm. Intramedullary diffusion of injectate in the spinal cord is facilitated with CED compared with standard injection technique. Pre-clinical studies in large animal models are warranted.
- CT
- intervention
- MRI
- navigation
- spine
Statistics from Altmetric.com
Footnotes
Contributors All authors contributed to this work as follows:. JFT: contribution to conception, design, acquisition, analysis, drafting, and final approval. DLC: contribution to conception, design, acquisition, revision of manuscript, and final approval. MCM: contribution to acquisition, revision of manuscript, and final approval. PL: contribution to design, acquisition, revision, and final approval of manuscript. MRA: contribution to analysis, revision, and final approval of manuscript. SWH: contribution to design, analysis, revision, and final approval of manuscript. MRW: contribution to design, revision, and final approval of manuscript. TM: contribution to conception, acquisition, analysis, revision, and final approval of manuscript. EAS: contribution to drafting, conception, acquisition, analysis, revision, and final approval of manuscript.
Funding This work was supported by NIBIB grant number 5R01EB012031 (SWH, MWW).
Competing interests None declared.
Patient consent Not required.
Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement Available upon request from the corresponding author.