Article Text

Download PDFPDF
Original research
Stent retrievers with segmented design improve the efficacy of thrombectomy in tortuous vessels

Abstract

Introduction Tortuous vascular anatomy is one of the greatest challenges in mechanical thrombectomy. This study examines the impact of vascular tortuosity on the performance of stent retrievers and evaluates the efficacy of the newer generation stent retrievers with segmented design.

Materials and methods Models with mild, moderate, and severe tortuosity with an internal carotid artery (ICA) and a middle cerebral artery (MCA) were created. An elastic and cohesive clot was placed in the MCA lying from distal M1 and proximal M2. We assessed the revascularization rates of two commonly used stent retrievers (Trevo XP and Solitaire FR) and two newer stent retrievers with segmented design (Embotrap and Versi) in each vascular model.

Results Both the type of stent retriever and the severity of vessel tortuosity significantly affected the successful recanalization rate. Post-hoc tests showed that the rate of revascularization was significantly less in severe tortuosity than in mild or moderate tortuosity (P<0.001). The Versi resulted in higher success rates than the Solitaire (P<0.01) and the Trevo (P<0.05). The success rates of the Embotrap were higher than the Solitaire and Trevo stent retrievers, although the difference was not statistically significant.

Conclusions Severe tortuosity reduces the performance of mechanical thrombectomy. The segmented design in stent retrievers could improve the efficacy of mechanical thrombectomy in tortuous vessels.

Trial registration ESCAPE NCT01778335;SWIFT PRIME >NCT01657461; REVASCAT >NCT01692379; All post-results.

  • stroke
  • thrombectomy
  • stent
  • intervention

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.