Article Text

Download PDFPDF
Original research
Evaluation of a modular in vitro neurovascular procedure simulation for intracranial aneurysm embolization
  1. Marie Teresa Nawka1,
  2. Johanna Spallek2,
  3. Juliane Kuhl2,
  4. Dieter Krause1,2,
  5. Jan Hendrik Buhk1,
  6. Jens Fiehler1,
  7. Andreas Frölich1
  1. 1 Universitatsklinikum Hamburg Eppendorf Klinik und Poliklinik fur Neuroradiologische Diagnostik und Intervention, Hamburg, Germany
  2. 2 Technical University Hamburg-Harburg, Hamburg, Germany
  1. Correspondence to Dr Marie Teresa Nawka, Universitatsklinikum Hamburg Eppendorf Klinik und Poliklinik fur Neuroradiologische Diagnostik und Intervention, 20251 Hamburg, Germany; m.nawka{at}


Background Rapid development in endovascular aneurysm therapy continuously drives demand for suitable neurointerventional training opportunities.

Objective To investigate the value of an integrated modular neurovascular training environment for aneurysm embolization using additively manufactured vascular models.

Methods A large portfolio of 30 patient-specific aneurysm models derived from different treatment settings (eg, coiling, flow diversion, flow disruption) was fabricated using additive manufacturing. Models were integrated into a customizable neurointerventional simulator with interchangeable intracranial and cervical vessel segments and physiological circuit conditions (‘HANNES’; Hamburg ANatomic Neurointerventional Endovascular Simulator). Multiple training courses were performed and participant feedback was obtained using a questionnaire.

Results Training for aneurysm embolization could be reliably performed using HANNES. Case-specific clinical difficulties, such as difficult aneurysm access or coil dislocation, could be reproduced. During a training session, models could be easily exchanged owing to standardized connectors in order to switch to a different treatment situation or to change from ‘treated’ back to ‘untreated’ condition. Among 23 participants evaluating hands-on courses using a five-point scale from 1 (strongly agree) to 5 (strongly disagree), HANNES was mostly rated as ‘highly suitable for practicing aneurysm coil embolization’ (1.78±0.79).

Conclusion HANNES offers a wide variability and flexibility for case-specific hands-on training of intracranial aneurysm treatment, providing equal training conditions for each situation. The high degree of standardization offered may be valuable for analysis of device behavior or assessment of physician skills. Moreover, it has the ability to reduce the need for animal experiments.

  • aneurysm
  • angiography
  • catheter
  • intervention
  • technique

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Contributors Conception/design of work: AF. Data collection: AMF, JK. Data analysis and interpretation: JHB, AF, JF, JS, JK, DK. Drafting the article: AF. Critical revision of the article: JS, JK, DK, JHB, AF, JF. Final approval of the version to be published: AF, JF. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: JS, JK, DK, JHB, AF, JF.

  • Funding This work was supported by the German Ministry for Education and Research (BMBF grant 031L0068B).

  • Competing interests The prepared patent is currently being reviewed by the corresponding authority; no other relationships or activities that could appear to have influenced the submitted work.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Patient consent for publication Not required.