Article Text
Abstract
Background In patients suffering from acute ischemic stroke from large vessel occlusion (LVO), mechanical thrombectomy (MT) often leads to successful reperfusion. Only approximately half of these patients have a favorable clinical outcome. Our aim was to determine the prognostic factors associated with poor clinical outcome following complete reperfusion.
Methods Patients treated with MT for LVO from a prospective single-center stroke registry between July 2015 and April 2019 were screened. Complete reperfusion was defined as Thrombolysis in Cerebral Infarction (TICI) grade 3. A modified Rankin scale at 90 days (mRS90) of 3–6 was defined as ‘poor outcome’. A logistic regression analysis was performed with poor outcome as a dependent variable, and baseline clinical data, comorbidities, stroke severity, collateral status, and treatment information as independent variables.
Results 123 patients with complete reperfusion (TICI 3) were included in this study. Poor clinical outcome was observed in 67 (54.5%) of these patients. Multivariable logistic regression analysis identified greater age (adjusted OR 1.10, 95% CI 1.04 to 1.17; p=0.001), higher admission National Institutes of Health Stroke Scale (NIHSS) (OR 1.14, 95% CI 1.02 to 1.28; p=0.024), and lower Alberta Stroke Program Early CT Score (ASPECTS) (OR 0.6, 95% CI 0.4 to 0.84; p=0.007) as independent predictors of poor outcome. Poor outcome was independent of collateral score.
Conclusion Poor clinical outcome is observed in a large proportion of acute ischemic stroke patients treated with MT, despite complete reperfusion. In this study, futile recanalization was shown to occur independently of collateral status, but was associated with increasing age and stroke severity.
- stroke
- thrombectomy
- intervention
Statistics from Altmetric.com
Footnotes
Twitter @noelvanhorn
UH and FF contributed equally.
Correction notice Since its online publication, this article has been updated to show that authors 'Uta Hanning' and 'Fabian Flottmann' are equally contributing.
Contributors NVH, HK, UH, and FF made substantial contributions to the conception and design of the work. Data acquisition was performed by NVH, HK, HL, RMD, MD-C, GB, GT, CB, FF, and UH. NVH, HK, and FF performed the data analysis. Interpretation of the data was done by NVH, FF, HK, JF, GT, UH, GB, and HL. NVH and FF drafted the manuscript and all of the other authors revised it critically for important intellectual content. All authors approved the final version to be published. They agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the manuscript are appropriately investigated and resolved.
Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.
Competing interests JF: Consultant for Acandis, Boehringer Ingelheim, Codman, Microvention, Sequent, Stryker. Speaker for Bayer Healthcare, Bracco, Covidien/ev3, Penumbra, Philips, Siemens. Grants from Bundesministeriums für Wirtschaft und Energie (BMWi), Bundesministerium für Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), European Union (EU), Covidien, Stryker (THRILL study), Microvention (ERASER study), Philips. GT: Consulting fees from Acandis, grant support and lecture fees from Bayer, lecture fees from Boehringer Ingelheim, Bristol-Myers Squibb/Pfizer, and Daiichi Sankyo, and consulting fees and lecture fees from Stryker. Grants from Bundesministerium für Wirtschaft und Energie (BMWi), Deutsche Forschungsgemeinschaft (DFG), European Union (EU), German Innovation Fund, Corona Foundation.
Patient consent for publication Not required.
Provenance and peer review Not commissioned; externally peer reviewed.
Data availability statement Data are available upon reasonable request. Data supporting the findings are available from the corresponding author upon reasonable request.