Flow diversion for compressive unruptured internal carotid artery aneurysms with neuro-ophthalmological symptoms: a systematic review and meta-analysis ======================================================================================================================================================= * Daniel P O Kaiser * Ani Cuberi * Jennifer Linn * Matthias Gawlitza ## Abstract **Background** Data on the safety and efficacy of flow diverters (FD) for the treatment of unruptured internal carotid artery (ICA) aneurysms with compressive neuro-ophthalmological symptoms (NOS) are scarce and comprise mainly small case series. **Methods** We performed a search of three databases and included series with ≥10 patients, with unruptured aneurysms of the ICA and NOS, treated with FD. Random-effects analysis of treatment results and safety was performed. **Results** A total of 22 studies reporting on 594 patients were included. Pooled proportions of NOS recovery, improvement, transient and permanent worsening were: 47.4% (95% CI 35.0% to 60.1%); 74.5% (95% CI 67.9% to 80.2%); 7.1% (95% CI 3.3% to 14.7%); and 4.9% (95% CI 3.2% to 7.4%), respectively. Rates of complete recovery and improvement in patients with isolated visual symptoms were 30.6% (95% CI 12.5% to 57.7%) and 56.6% (95% CI 42.3% to 69.9%). Isolated oculomotor symptoms recovered completely in 47.8% (95% CI 29.9% to 66.3%) and improved in 78% (95% CI 69.2% to 84.9%). Morbidity occurred in 5% (95% CI 2.8% to 9%) and mortality in 3.9% (95% CI 2% to 7.5%) of patients. An increased likelihood of symptom improvement was observed when treatment was performed early (<1 month) after symptom onset (OR=11.22, 95% CI 3.9% to 32.5%). **Conclusion** Flow diversion promotes recovery or improvement of compressive symptoms in a large proportion of patients but is associated with significant rates of morbidity and mortality. Transient and permanent NOS worsening is not uncommon. Early treatment is of utmost importance, as it increases the likelihood of symptom improvement more than 10-fold. * Complication * Aneurysm * Flow Diverter * Stent #### WHAT IS ALREADY KNOWN ON THIS TOPIC * There are limited data in the literature on flow diversion for unruptured internal carotid artery (ICA) aneurysms with compressive neuro-ophthalmological symptoms. #### WHAT THIS STUDY ADDS * This meta-analysis provides a comprehensive overview of the efficacy and safety of flow diversion in this specific patient population. #### HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY * Flow diversion is an effective and valuable treatment strategy for patients with compressive ICA aneurysms and neuro-ophthalmological symptoms. However, it is important to treat patients early after symptom onset and to be aware of the non-negligible morbidity and mortality rate. ## Introduction Aneurysms of the internal carotid artery causing mass effect and neuro-ophthalmological symptoms (NOS) by compression of the cranial nerves (CN) are a rare pathology. Visual impairment or diplopia induced by CN palsy are disabling symptoms and of high relevance for the patient’s quality of life. Aneurysms inducing compression-related symptoms are often large and/or rapidly growing lesions.1 Intrasaccular coil embolization, parent artery occlusion (PAO)—either with or without extracranial–intracranial bypass surgery—or aneurysm clipping have been studied for the management of these lesions.2–5 Flow diverters (FD) promote aneurysm collapse and healing, thus reducing the mass effect, while preserving the vessel patency.6 To date, the literature on the use of FD in internal carotid artery (ICA) aneurysms causing compressive NOS is still scarce. The present study aims to provide a systematic review of the literature and meta-analysis of this treatment method, aiming to provide physicians involved in aneurysm treatment with a realistic pooled estimate of treatment efficacy and safety. Moreover, we sought to investigate the relevance of time lapse from symptom onset to treatment on the rates of symptom improvement. ## Methods ### Ethics statement Approval of the ethics committee was not required for this study as only published primary studies were analyzed. This study was not registered. ### Search strategy The senior author independently reviewed the literature on PubMed, Scopus, and Web of Science, using a predefined search algorithm (detailed in the online supplemental material). We searched titles, abstracts, and keywords. Duplicates were removed, titles were screened and abstracts were reviewed. Second, if potentially eligible for this analysis, the full text paper was retrieved and reviewed thoroughly. The first and the senior author extracted the data and entered them into a predefined data sheet; discrepancies were solved by consensus. ### Supplementary data [[jnis-2022-019249supp001.pdf]](pending:yes) ### Inclusion criteria We included series reporting on ≥10 patients with (1) an unruptured intracranial aneurysm of the ICA, with (2) a compressive effect on the oculomotor nerves and/or the optic pathway, considered responsible for ocular symptoms—that is, (3) cranial neuropathy affecting the CN III, IV, and VI (alone or in combination) and/or (4) visual impairment due to compressive optic neuropathy. Treatment was (5) with flow diversion alone or in conjunction with coil embolization. ### Data extraction and outcome measures The objectives of this meta-analysis were to summarize the clinical and anatomical efficacy (compressive symptom improvement or complete recovery and aneurysm occlusion) and the safety (treatment-related thromboembolic and hemorrhagic complications with permanent deficit or death) of flow diversion for treatment of compressive ICA aneurysms with neuro-ophthalmological symptoms. Secondary endpoints were the rates of transient and permanent symptom worsening and the impact of time from symptom onset to treatment on the symptom improvement rate. We extracted, with as much detail as possible, patient-, aneurysm-, and treatment-specific data from the original articles. If necessary and possible, values were recalculated from individual patient data provided in the publications—for example, in tables or the appendix. Data from the series of Boulouis *et al* 7 were calculated from the original raw dataset. We extracted data on isolated visual or oculomotor symptoms, or a combination of both. CN deficits at follow-up were graded as ‘complete recovery’, ‘partial recovery’, and ‘permanent worsening’. The sum of patients with ‘complete recovery’ and ‘partial recovery’ was defined as ‘improvement’. Articles were furthermore screened for signs of ‘transient worsening’ of CN deficits after flow diversion. Morbidity was defined as any neurological deterioration of the patient’s status (except worsening of NOS), related to presumed hemorrhagic or ischemic complications. Aneurysm occlusion grades were extracted at last follow-up using the widely accepted classification: ‘aneurysm remnant’, ‘neck remnant’, and ‘complete occlusion’.8 ‘Neck remnant’ and ‘aneurysm remnant’ were grouped as ‘incomplete occlusion’. When an alternative grading scale was used,9 only grade D was considered ‘complete occlusion’. ### Statistical analysis The analysis was performed using primarily R Studio (R Studio, Boston, USA, version 2022.02.2) with the metafor10 and meta11 packages. Random-effect analyses were performed after logit transformation. Results are presented as percentage and 95% CI. I2 statistic and Q-test were used to assess study heterogeneity. Publication bias was assessed by visual inspection of funnel plots and with Egger’s unweighted regression test. Pooled effects of early versus late treatment (ie, within 1 month vs beyond 1 month after symptom onset) were calculated using the RevMan 5 software package,12 applying random-effects analysis. We performed an additional random-effect meta-regression, studying the effect of mean/median patient age, length of follow-up, and study size as moderators on the effect size of complete NOS recovery and improvement using SPSS Statistics 28 (IBM, Armonk, USA). ## Results ### Study inclusion Literature search was performed on March 21, 2022. After removal of duplicates and screening of titles and abstracts, we sought for the original articles of 82 publications.7 13–93 After completion of literature review and data extraction and before closing the database, the literature search was repeated on PubMed only on May 22, 2022, using the above-mentioned search string to identify additional potentially eligible articles. Two papers published in the meantime were identified.94 95 Four papers published in Chinese in Chinese journals could not be retrieved.61 66 69 70 Thus, 80 papers were screened for eligibility. Detailed information on publication inclusion and exclusion are depicted in online supplemental figure 1 and online supplemental table 1. ### Descriptive results Altogether, 22 studies were included, encompassing 594 patients treated with flow diversion for an unruptured intracranial aneurysm of the ICA and compression-related neuro-ophthalmological symptoms. An overview of the included studies is shown in table 1. Online supplemental table 2 depicts patients demographics and aneurysm characteristics. Data on isolated visual or oculomotor symptoms were extracted for 149 and 293 patients, respectively. All relevant data are shown in the online supplemental material. Dedicated neuro-ophthalmological follow-up protocols were mentioned in three publications only.37 46 95 Neuro-ophthalmological outcomes are depicted in table 2 and in online supplemental tables 3 and 4. Online supplemental table 5 summarizes the neurological complications and anatomical results. View this table: [Table 1](http://jnis.bmj.com/content/15/9/892/T1) Table 1 Study overview View this table: [Table 2](http://jnis.bmj.com/content/15/9/892/T2) Table 2 Overall neuro-ophthalmological outcomes ### Pooled proportions Random-effect modeling analysis of NOS (figure 1) showed pooled rates of 47.4% (95% CI 35.0% to 60.1%) for complete recovery, 74.5% (95% CI 67.9% to 80.2%) for improvement, 7.1% (95% CI 3.3% to 14.7%) for transient, and 4.9% (95% CI 3.2% to 7.4%) for permanent symptom worsening. For all parameters except permanent worsening (I2=0%, p=0.8), significant moderate to substantial study heterogeneity (I2 between 58% and 79%) was detected (see figure 1). Visual inspection of funnel plots (online supplemental figure 2) and results of Egger’s test revealed significant asymmetry for the parameters improvement (p=0.03, online supplemental figure 2B), transient (p<0.0001, online supplemental figure 2C) and permanent worsening (p<0.0001, online supplemental figure 2D). No significant asymmetry was observed for complete recovery (online supplemental figure 2A; p=0.91). ![Figure 1](http://jnis.bmj.com/https://jnis.bmj.com/content/neurintsurg/15/9/892/F1.medium.gif) [Figure 1](http://jnis.bmj.com/content/15/9/892/F1) Figure 1 Forest plots for the proportions of complete recovery (A), improvement (B), transient (C), and permanent worsening (D). Pooled rates of complete recovery and improvement in patients with isolated visual symptoms (figure 2A,B) were 30.6% (95% CI 12.5% to 57.7%) and 56.6% (95% CI 42.3% to 69.9%), respectively. Isolated oculomotor symptoms (figure 2C,D) recovered completely in 47.8% (95% CI 29.9 to 66.3) and improved in 78% (95% CI 69.2 to 84.9). All parameters demonstrated significant moderate to substantial heterogeneity (I2 between 44% and 78%, p<0.05). Funnel plots (online supplemental figure 3) and Egger’s test revealed publication bias only for the parameter oculomotor improvement (p=0.006; other p values >0.05). ![Figure 2](http://jnis.bmj.com/https://jnis.bmj.com/content/neurintsurg/15/9/892/F2.medium.gif) [Figure 2](http://jnis.bmj.com/content/15/9/892/F2) Figure 2 Forest plots for the proportions of complete visual recovery (A) and improvement (B), and complete oculomotor recovery (C) and improvement (D). The pooled estimate of complete aneurysm occlusion at last follow-up was 68.6% (95% CI 58.8% to 77%). No significant heterogeneity or publication asymmetry was observed (Egger’s test p=0.12; online supplemental figure 4). The pooled proportions of morbidity and mortality were 5% (95% CI 2.8% to 9%) and 3.9% (95% CI 2% to 7.5%), as shown in figure 3. Neither significant heterogeneity nor asymmetry (online supplemental figure 5; Egger’s test p>0.05) were detected. ![Figure 3](http://jnis.bmj.com/https://jnis.bmj.com/content/neurintsurg/15/9/892/F3.medium.gif) [Figure 3](http://jnis.bmj.com/content/15/9/892/F3) Figure 3 Forest plots for the proportions of morbidity (A) and mortality (B). ### Early versus late treatment For a subset of 110 patients, information on time lapse from symptom onset to treatment were available. Random-effects analysis showed an increased likelihood of symptom improvement when treatment was performed early (ie, within 1 month) after symptom onset (OR=11.22, 95% CI 3.9% to 32.5%). The respective Forest plot is shown in figure 4, no relevant heterogeneity was detected. ![Figure 4](http://jnis.bmj.com/https://jnis.bmj.com/content/neurintsurg/15/9/892/F4.medium.gif) [Figure 4](http://jnis.bmj.com/content/15/9/892/F4) Figure 4 Forest plots for the effect of early (within 1 month) and delayed (>1 month) treatment on symptom improvement. ### Influence of patient age, length of follow-up, and study size on neuro-ophthalmological outcome Meta-regression revealed a significant effect of patient age on improvement of NOS (p=0.006; R2=100%) and a non-significant association with complete NOS recovery (p=0.126; R2=61.6%), as is shown in online supplemental figure 6A,B. No relevant effect on NOS complete recovery and improvement was detected when using the length of follow-up (in months) and the study size as moderators (online supplemental figure 6C–F). ## Discussion Our meta-analysis of 594 patients treated with FD for ICA aneurysm with compressive NOS is the first to give a global overview on the literature for this specific patient population and treatment technique. Forty-eight percent of the patients treated with flow diversion recovered completely from their initial deficit and almost 75% showed improvement of compressive symptoms. Transient and permanent worsening occurred in 7.1% and 4.9% of patients, respectively. Complications were not uncommon, however, with morbidity occurring in 5% and mortality in 3.9% of patients. Complete recovery and improvement were less common in patients with isolated visual symptoms (30.6% and 56.6%), than in those with with isolated oculomotor symptoms (47.8% and 78%). Early treatment of symptomatic aneurysms with compressive symptoms seems to be essential: our analysis suggests that the likelihood of symptom improvement increases more than 10-fold if treatment is performed within the first month. Alternative treatment methods differ, depending on the location of the aneurysm. Extradural aneurysms have historically been treated mostly with PAO only or in conjunction with an extracranial–intracranial bypass surgery in cases of a negative test occlusion. A meta-analysis from 2015 found an improvement in mass effect in 83% of patients treated with PAO only, which is comparable to the present data.96 Also, the rates of morbidity and mortality of PAO only (7% and 4%) were comparable with the current data for flow diversion but they increased to 11% and 7% when an additional bypass was needed for PAO.96 Interestingly, the authors found also that selective coil embolization of the culprit aneurysm leads to symptom improvement in 72% but is associated with a high re-treatment rate for 18%, given that large and giant aneurysms often recur after coil embolization.97 In our interpretation of the data, selective coiling of compressive extradural aneurysms is not an expedient treatment, as it is most probably not durable and aneurysm recurrence remains in many instances only a question of time. But also, in modern times PAO remains a valuable option, particularly if the vessel can be sacrificed without prior bypass surgery. The increased odds of complications with this surgical procedure may, however, favor flow diversion for patients for whom an occlusion test has failed. Compressive intradural aneurysms, arising on the distal intracranial ICA were in the past mainly treated with microsurgical clipping or selective coil embolization. A meta-analysis of the treatment of paraclinoid aneurysms98 found that vision improved in 58% of patients after clipping and 49% after coiling. Vision worsened in 11% of patients after clipping and 9% after coiling. Interestingly, 71% vision improvement and 5% worsening were described in that analysis for FD. For compressive aneurysms of the posterior communicating artery segment, microsurgical clipping is an even more well-studied and valid option. Meta-analyses conducted for ruptured and unruptured aneurysms found higher rates of symptom recovery/improvement in patients treated surgically compared with intrasaccular coiling.3 99 Additionally, a large proportion of posterior communicating artery aneurysms develop NOS in the setting of rupture and are thus not eligible for flow diversion.100 The observation that the odds of NOS improvement and possibly also of complete recovery tend to increase with patient age is surprising, as nerve regeneration is known to be delayed and less effective in the aging individual.101 Accordingly, in a recent study increasing age was associated with incomplete recovery, and patients recovering completely were significantly younger than those who showed incomplete recovery only.7 The present meta-analysis underpins the importance of timely treatment, as the likelihood of symptom improvement increases more than 10-fold if treatment is performed within the first month. Prompt diagnosis and treatment of these patients is thus paramount and delays should be avoided, also when the aneurysm is unruptured. The pooled rates of morbidity and mortality were 5% and 3.9%, respectively, which is higher than the findings of PUFS (morbidity/mortality rate of 5.6%),102 but comparable to the International Retrospective Study of the Pipeline Embolization Device (IntrePED). In that registry, neurologic morbidity/mortality was observed in 9.2% of patients with unruptured aneurysms of the ICA measuring more than 10 mm.103 As recent studies have shown that the risk of morbidity/mortality increases more than threefold per decade of age,7 104 we conclude that treatment with FD for compressive ICA aneurysms in elderly patients should be considered only after careful consideration of the risk–-benefit ratio. The fact that chances of complete symptom recovery may decrease with increasing age, fusiform aneurysm morphology, and a longer delay between the onset of ocular symptoms and endovascular treatment should be taken into account. This is important in particular for extradural aneurysms, which pose a negligible statistical risk of hemorrhage in the elderly patient.105 The pooled rate of complete occlusion (68.6%) is comparable to published data in the literature. While complete occlusion was observed in 86.8% in PUFS after 12 months,102 which should be seen as highly selected patient sample, complete occlusion at 12 months was described in 75.8% of aneurysms in a single-centre series of 1000 aneurysms treated with the PED.106 Our meta-analysis has some limitations. It is inherently flawed by the fact that many included publications are retrospective, often single-center case series. Moreover, earlier series on FD (for example34 35 37 45) bear the risk of overlap with the subset analysis of patients with NOS in the PUFS study by Sahlein *et al* 46; some studies explicitly stated that patients had been at least partly included in PUFS.28 31 54 A small number of double inclusions in this meta-analysis must thus be assumed. Another limitation is that in many studies, no specific demographic and procedural details were given for the subset of patients with NOS, as they were described as a fraction of a larger study on FD use for ICA aneurysms. Overall, the extracted data are characterized by substantial study heterogeneity and signs of publication bias and only in a minority of publications was specialized neuro-ophthalmological follow-up carried out. ## Conclusion Flow diversion for compressive ICA aneurysms with NOS leads to recovery or improvement of compressive symptoms in a large proportion of patients and is a valuable treatment strategy—in particular, if sacrifice of the parent vessel is not possible. However, it is associated with significant rates of morbidity and mortality, and transient or permanent NOS worsening is not uncommon. Early detection and treatment of compressive aneurysms is paramount, as treatment within the first month from symptom onset increases the likelihood of symptom improvement more than 10-fold. The present literature is characterized by significant heterogeneity and publication bias and only a minority of publications specified dedicated neuro-ophthalmological follow-up investigations. Controlled data should thus be obtained in the future, potentially also providing solid evidence on which treatment should be chosen for which patient. ### Supplementary data [[jnis-2022-019249supp002.pdf]](pending:yes) ## Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information. ## Ethics statements ### Patient consent for publication Not applicable. ### Ethics approval Not applicable. ## Footnotes * Twitter @daniel_kaiserMD * Correction notice This article has been corrected since it was first published. The open access licence has been updated to CC BY. 17th May 2023. * Contributors DPOK: Acquisition of data, data analysis, critical review of manuscript, approval of manuscript. AC, JL: Critical review of manuscript, approval of manuscript. MG: Acquisition of data, data analysis, drafting of manuscript, critical review of manuscript, approval of manuscript, guarantor of the study. * Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors. * Competing interests DPOK: Received stents from Phenox for research purposes and funding from the Else Körner Fresenius Center of Digital Health and the Joachim Herz Foundation; has a non-financial research agreement with Brainomix; serves as board member of the German Society of Neuroradiology (DGNR). MG: Consultancy contract with Phenox; proctoring contract with MicroVention; member of the clinical event committee for a study on a flow diverter, sponsored by Microvention; payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events by Phenox; received stents from Phenox for research purposes; received funding from the Else Körner Fresenius Center of Digital Health. * Provenance and peer review Not commissioned; externally peer reviewed. * Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise. [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/) This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: [https://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/). ## References 1. Micieli JA , Newman NJ , Barrow DL , et al . Intracranial aneurysms of neuro-ophthalmologic relevance. J Neuroophthalmol 2017;37:421–39.[doi:10.1097/WNO.0000000000000515](http://dx.doi.org/10.1097/WNO.0000000000000515) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28665866 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1097/WNO.0000000000000515&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 2. van Rooij WJ , Sluzewski M . Unruptured large and giant carotid artery aneurysms presenting with cranial nerve palsy: comparison of clinical recovery after selective aneurysm coiling and therapeutic carotid artery occlusion. AJNR Am J Neuroradiol 2008;29:997–1002.[doi:10.3174/ajnr.A1023](http://dx.doi.org/10.3174/ajnr.A1023) pmid:http://www.ncbi.nlm.nih.gov/pubmed/18296545 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.ncbi.nlm.nih.gov/pubmed/18296545&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 3. Güresir E , Schuss P , Setzer M , et al . Posterior communicating artery aneurysm-related oculomotor nerve palsy: influence of surgical and endovascular treatment on recovery: single-center series and systematic review. Neurosurgery 2011;68:1527–34.[doi:10.1227/NEU.0b013e31820edd82](http://dx.doi.org/10.1227/NEU.0b013e31820edd82) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21311376 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1227/NEU.0b013e31820edd82&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=21311376&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000290299700040&link_type=ISI) 4. Hassan T , Hamimi A . Successful endovascular management of brain aneurysms presenting with mass effect and cranial nerve palsy. Neurosurg Rev 2013;36:87–97.[doi:10.1007/s10143-012-0404-3](http://dx.doi.org/10.1007/s10143-012-0404-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22782498 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1007/s10143-012-0404-3&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22782498&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 5. Dodier P , Wang W-T , Hosmann A . Combined standard bypass and parent artery occlusion for management of giant and complex internal carotid artery aneurysms. J Neurointerv Surg 2022;14:593–8.[doi:10.1136/neurintsurg-2021-017673](http://dx.doi.org/10.1136/neurintsurg-2021-017673) pmid:34353887 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjg6IjE0LzYvNTkzIjtzOjQ6ImF0b20iO3M6MjY6Ii9uZXVyaW50c3VyZy8xNS85Lzg5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 6. Szikora I , Marosfői M , Salomváry B . Resolution of mass effect and compression symptoms following endoluminal flow diversion for the treatment of intracranial aneurysms. AJNR Am J Neuroradiol 2013;34:935–9. [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNC81LzkzNSI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 7. Boulouis G , Soize S , Maus V . Flow diversion for internal carotid artery aneurysms with compressive neuro-ophthalmologic symptoms: clinical and anatomical results in an international multicenter study. J NeuroIntervent Surg 2021.[doi:10.1136/neurintsurg-2021-018188](http://dx.doi.org/10.1136/neurintsurg-2021-018188) 8. Raymond J , Guilbert F , Weill A , et al . Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 2003;34:1398–403.[doi:10.1161/01.STR.0000073841.88563.E9](http://dx.doi.org/10.1161/01.STR.0000073841.88563.E9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/12775880 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjM0LzYvMTM5OCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 9. O'kelly CJ , Krings T , Fiorella D , et al . A novel grading scale for the angiographic assessment of intracranial aneurysms treated using flow diverting stents. Interv Neuroradiol 2010;16:133–7.[doi:10.1177/159101991001600204](http://dx.doi.org/10.1177/159101991001600204) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20642887 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1177/159101991001600204&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=20642887&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 10. Viechtbauer W . Conducting meta-analyses in R with the **metafo*r* ** package. J Stat Softw 2010;36.[doi:10.18637/jss.v036.i03](http://dx.doi.org/10.18637/jss.v036.i03) 11. Balduzzi S , Rücker G , Schwarzer G . How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019;22:153–60.[doi:10.1136/ebmental-2019-300117](http://dx.doi.org/10.1136/ebmental-2019-300117) [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZWJtZW50YWwiO3M6NToicmVzaWQiO3M6ODoiMjIvNC8xNTMiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 12. Review Manager (RevMan) [Computer program]. Version 5.4, The Cochrane Collaboration 2020. 13. Szikora I , Berentei Z , Kulcsar Z , et al . Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. AJNR Am J Neuroradiol 2010;31:1139–47.[doi:10.3174/ajnr.A2023](http://dx.doi.org/10.3174/ajnr.A2023) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20150304 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzMS82LzExMzkiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 14. Lubicz B , Collignon L , Raphaeli G , et al . Flow-diverter stent for the endovascular treatment of intracranial aneurysms: a prospective study in 29 patients with 34 aneurysms. Stroke 2010;41:2247–53.[doi:10.1161/STROKEAHA.110.589911](http://dx.doi.org/10.1161/STROKEAHA.110.589911) pmid:http://www.ncbi.nlm.nih.gov/pubmed/20798369 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjEwOiI0MS8xMC8yMjQ3IjtzOjQ6ImF0b20iO3M6MjY6Ii9uZXVyaW50c3VyZy8xNS85Lzg5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. Nelson PK , Lylyk P , Szikora I , et al . The pipeline embolization device for the intracranial treatment of aneurysms trial. AJNR Am J Neuroradiol 2011;32:34–40.[doi:10.3174/ajnr.A2421](http://dx.doi.org/10.3174/ajnr.A2421) pmid:http://www.ncbi.nlm.nih.gov/pubmed/21148256 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo3OiIzMi8xLzM0IjtzOjQ6ImF0b20iO3M6MjY6Ii9uZXVyaW50c3VyZy8xNS85Lzg5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 16. Leonardi M , Cirillo L , Toni F , et al . Treatment of intracranial aneurysms using flow-diverting silk stents (BALT): a single centre experience. Interv Neuroradiol 2011;17:306–15.[doi:10.1177/159101991101700305](http://dx.doi.org/10.1177/159101991101700305) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22005692 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1177/159101991101700305&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22005692&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 17. Berge J , Biondi A , Machi P , et al . Flow-diverter silk stent for the treatment of intracranial aneurysms: 1-year follow-up in a multicenter study. AJNR Am J Neuroradiol 2012;33:1150–5.[doi:10.3174/ajnr.A2907](http://dx.doi.org/10.3174/ajnr.A2907) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22300924 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzMy82LzExNTAiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 18. Briganti F , Napoli M , Tortora F , et al . Italian multicenter experience with flow-diverter devices for intracranial unruptured aneurysm treatment with periprocedural complications--a retrospective data analysis. Neuroradiology 2012;54:1145–52.[doi:10.1007/s00234-012-1047-3](http://dx.doi.org/10.1007/s00234-012-1047-3) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22569955 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1007/s00234-012-1047-3&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22569955&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000309363300011&link_type=ISI) 19. Puffer RC , Kallmes DF , Cloft HJ , et al . Patency of the ophthalmic artery after flow diversion treatment of paraclinoid aneurysms. J Neurosurg 2012;116:892–6.[doi:10.3171/2011.11.JNS111612](http://dx.doi.org/10.3171/2011.11.JNS111612) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22224787 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3171/2011.11.JNS111612&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22224787&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000301805500033&link_type=ISI) 20. Kan P , Siddiqui AH , Veznedaroglu E , et al . Early postmarket results after treatment of intracranial aneurysms with the pipeline embolization device: a U.S. multicenter experience. Neurosurgery 2012;71:1080–7.[doi:10.1227/NEU.0b013e31827060d9](http://dx.doi.org/10.1227/NEU.0b013e31827060d9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22948199 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1227/NEU.0b013e31827060d9&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22948199&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 21. Lanzino G , Crobeddu E , Cloft HJ , et al . Efficacy and safety of flow diversion for paraclinoid aneurysms: a matched-pair analysis compared with standard endovascular approaches. AJNR Am J Neuroradiol 2012;33:2158–61.[doi:10.3174/ajnr.A3207](http://dx.doi.org/10.3174/ajnr.A3207) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22790243 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzMvMTEvMjE1OCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 22. Yu SC-H , Kwok C-K , Cheng P-W , et al . Intracranial aneurysms: midterm outcome of pipeline embolization device--a prospective study in 143 patients with 178 aneurysms. Radiology 2012;265:893–901.[doi:10.1148/radiol.12120422](http://dx.doi.org/10.1148/radiol.12120422) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22996749 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1148/radiol.12120422&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=22996749&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000311420300027&link_type=ISI) 23. Chalouhi N , Tjoumakaris S , Starke RM , et al . Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. Stroke 2013;44:2150–4.[doi:10.1161/STROKEAHA.113.001785](http://dx.doi.org/10.1161/STROKEAHA.113.001785) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23723311 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjQ0LzgvMjE1MCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 24. De Vries J , Boogaarts J , Van Norden A , et al . New generation of flow diverter (Surpass) for unruptured intracranial aneurysms: a prospective single-center study in 37 patients. Stroke 2013;44:1567–77.[doi:10.1161/STROKEAHA.111.000434](http://dx.doi.org/10.1161/STROKEAHA.111.000434) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23686973 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjQ0LzYvMTU2NyI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 25. Toma AK , Robertson F , Wong K , et al . Early single centre experience of flow diverting stents for the treatment of cerebral aneurysms. Br J Neurosurg 2013;27:622–8.[doi:10.3109/02688697.2013.793292](http://dx.doi.org/10.3109/02688697.2013.793292) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23705577 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3109/02688697.2013.793292&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=23705577&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 26. O'Kelly CJ , Spears J , Chow M , et al . Canadian experience with the pipeline embolization device for repair of unruptured intracranial aneurysms. AJNR Am J Neuroradiol 2013;34:381–7.[doi:10.3174/ajnr.A3224](http://dx.doi.org/10.3174/ajnr.A3224) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22859284 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNC8yLzM4MSI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 27. Colby GP , Lin L-M , Gomez JF , et al . Immediate procedural outcomes in 35 consecutive pipeline embolization cases: a single-center, single-user experience. J Neurointerv Surg 2013;5:237–46.[doi:10.1136/neurintsurg-2012-010299](http://dx.doi.org/10.1136/neurintsurg-2012-010299) pmid:http://www.ncbi.nlm.nih.gov/pubmed/22459178 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjc6IjUvMy8yMzciO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 28. Szikora I , Marosfoi M , Salomváry B , et al . Resolution of mass effect and compression symptoms following endoluminal flow diversion for the treatment of intracranial aneurysms. AJNR Am J Neuroradiol 2013;34:935–9.[doi:10.3174/ajnr.A3547](http://dx.doi.org/10.3174/ajnr.A3547) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23493889 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNC81LzkzNSI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 29. Malatesta E , Nuzzi NP , Divenuto I , et al . Endovascular treatment of intracranial aneurysms with flow-diverter stents: preliminary single-centre experience. Radiol Med 2013;118:971–83.[doi:10.1007/s11547-013-0944-9](http://dx.doi.org/10.1007/s11547-013-0944-9) pmid:http://www.ncbi.nlm.nih.gov/pubmed/23801392 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1007/s11547-013-0944-9&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=23801392&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 30. Moon K , Albuquerque FC , Ducruet AF , et al . Treatment of ophthalmic segment carotid aneurysms using the pipeline embolization device: clinical and angiographic follow-up. Neurol Res 2014;36:344–50.[doi:10.1179/1743132814Y.0000000322](http://dx.doi.org/10.1179/1743132814Y.0000000322) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24617935 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1179/1743132814Y.0000000322&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=24617935&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 31. Puffer RC , Piano M , Lanzino G , et al . Treatment of cavernous sinus aneurysms with flow diversion: results in 44 patients. AJNR Am J Neuroradiol 2014;35:948–51.[doi:10.3174/ajnr.A3826](http://dx.doi.org/10.3174/ajnr.A3826) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24356675 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNS81Lzk0OCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 32. Heller RS , Lawlor CM , Hedges TR , et al . Neuro-ophthalmic effects of stenting across the ophthalmic artery origin in the treatment of intracranial aneurysms. J Neurosurg 2014;121:18–23.[doi:10.3171/2014.3.JNS131493](http://dx.doi.org/10.3171/2014.3.JNS131493) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24724858 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 33. Chalouhi N , Tjoumakaris S , Phillips JLH , et al . A single pipeline embolization device is sufficient for treatment of intracranial aneurysms. AJNR Am J Neuroradiol 2014;35:1562–6.[doi:10.3174/ajnr.A3957](http://dx.doi.org/10.3174/ajnr.A3957) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24788125 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo5OiIzNS84LzE1NjIiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 34. Zanaty M , Chalouhi N , Starke RM , et al . Flow diversion versus conventional treatment for carotid cavernous aneurysms. Stroke 2014;45:2656–61.[doi:10.1161/STROKEAHA.114.006247](http://dx.doi.org/10.1161/STROKEAHA.114.006247) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25052318 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6OToic3Ryb2tlYWhhIjtzOjU6InJlc2lkIjtzOjk6IjQ1LzkvMjY1NiI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 35. Moon K , Albuquerque FC , Ducruet AF , et al . Resolution of cranial neuropathies following treatment of intracranial aneurysms with the pipeline embolization device. J Neurosurg 2014;121:1085–92.[doi:10.3171/2014.7.JNS132677](http://dx.doi.org/10.3171/2014.7.JNS132677) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25192477 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3171/2014.7.JNS132677&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=25192477&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 36. Buyukkaya R , Kocaeli H , Yildirim N , et al . Treatment of complex intracranial aneurysms using flow-diverting silk® stents. An analysis of 32 consecutive patients. Interv Neuroradiol 2014;20:729–35.[doi:10.15274/INR-2014-10070](http://dx.doi.org/10.15274/INR-2014-10070) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25496683 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.15274/INR-2014-10070&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=25496683&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 37. Tanweer O , Raz E , Brunswick A , et al . Cavernous carotid aneurysms in the era of flow diversion: a need to revisit treatment paradigms. AJNR Am J Neuroradiol 2014;35:2334–40.[doi:10.3174/ajnr.A4081](http://dx.doi.org/10.3174/ajnr.A4081) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25147199 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzUvMTIvMjMzNCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 38. Zhou Y , Yang P-F , Fang Y-B , et al . A novel flow-diverting device (Tubridge) for the treatment of 28 large or giant intracranial aneurysms: a single-center experience. AJNR Am J Neuroradiol 2014;35:2326–33.[doi:10.3174/ajnr.A3925](http://dx.doi.org/10.3174/ajnr.A3925) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24722307 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzUvMTIvMjMyNiI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 39. Alghamdi F , Morais R , Scillia P , et al . The silk flow-diverter stent for endovascular treatment of intracranial aneurysms. Expert Rev Med Devices 2015;12:753–62.[doi:10.1586/17434440.2015.1093413](http://dx.doi.org/10.1586/17434440.2015.1093413) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26415045 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1586/17434440.2015.1093413&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=26415045&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 40. Fischer S , Aguilar-Pérez M , Henkes E , et al . Initial experience with p64: a novel mechanically detachable flow diverter for the treatment of intracranial saccular sidewall aneurysms. AJNR Am J Neuroradiol 2015;36:2082–9.[doi:10.3174/ajnr.A4420](http://dx.doi.org/10.3174/ajnr.A4420) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26272970 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzYvMTEvMjA4MiI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 41. Oh S-Y , Lee KS , Kim B-S , et al . Management strategy of surgical and endovascular treatment of unruptured paraclinoid aneurysms based on the location of aneurysms. Clin Neurol Neurosurg 2015;128:72–7.[doi:10.1016/j.clineuro.2014.11.008](http://dx.doi.org/10.1016/j.clineuro.2014.11.008) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25462100 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1016/j.clineuro.2014.11.008&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=25462100&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 42. Shimizu T , Naito I , Aihara M , et al . Visual outcomes of endovascular and microsurgical treatment for large or giant paraclinoid aneurysms. Acta Neurochir 2015;157:13–20.[doi:10.1007/s00701-014-2251-1](http://dx.doi.org/10.1007/s00701-014-2251-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25326711 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1007/s00701-014-2251-1&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=25326711&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 43. Wakhloo AK , Lylyk P , de Vries J , et al . Surpass flow diverter in the treatment of intracranial aneurysms: a prospective multicenter study. AJNR Am J Neuroradiol 2015;36:98–107.[doi:10.3174/ajnr.A4078](http://dx.doi.org/10.3174/ajnr.A4078) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25125666 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo3OiIzNi8xLzk4IjtzOjQ6ImF0b20iO3M6MjY6Ii9uZXVyaW50c3VyZy8xNS85Lzg5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 44. Rouchaud A , Leclerc O , Benayoun Y , et al . Visual outcomes with flow-diverter stents covering the ophthalmic artery for treatment of internal carotid artery aneurysms. AJNR Am J Neuroradiol 2015;36:330–6.[doi:10.3174/ajnr.A4129](http://dx.doi.org/10.3174/ajnr.A4129) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25339649 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNi8yLzMzMCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 45. Zanaty M , Chalouhi N , Barros G , et al . Flow-diversion for ophthalmic segment aneurysms. Neurosurgery 2015;76:286–9. discussion 289-290.[doi:10.1227/NEU.0000000000000607](http://dx.doi.org/10.1227/NEU.0000000000000607) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25584955 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1227/NEU.0000000000000607&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=25584955&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 46. Sahlein DH , Fouladvand M , Becske T , et al . Neuroophthalmological outcomes associated with use of the pipeline embolization device: analysis of the PUFS trial results. J Neurosurg 2015;123:897–905.[doi:10.3171/2014.12.JNS141777](http://dx.doi.org/10.3171/2014.12.JNS141777) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26162031 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3171/2014.12.JNS141777&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=26162031&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 47. Di Maria F , Pistocchi S , Clarençon F , et al . Flow diversion versus standard endovascular techniques for the treatment of unruptured carotid-ophthalmic aneurysms. AJNR Am J Neuroradiol 2015;36:2325–30.[doi:10.3174/ajnr.A4437](http://dx.doi.org/10.3174/ajnr.A4437) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26272972 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzYvMTIvMjMyNSI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 48. Zhu Y , Pan J , Shen J , et al . Clinical and radiological outcomes after treatment of unruptured paraophthalmic internal carotid artery aneurysms: a comparative and pooled analysis of single-center experiences. World Neurosurg 2015;84:1726–38.[doi:10.1016/j.wneu.2015.07.036](http://dx.doi.org/10.1016/j.wneu.2015.07.036) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26210711 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1016/j.wneu.2015.07.036&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=26210711&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 49. Breu A-K , Hauser T-K , Ebner FH , et al . Morphologic and clinical outcome of intracranial aneurysms after treatment using flow diverter devices: mid-term follow-up. Radiol Res Pract 2016;2016:2187275.[doi:10.1155/2016/2187275](http://dx.doi.org/10.1155/2016/2187275) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27006830 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=27006830&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 50. Burrows AM , Brinjikji W , Puffer RC , et al . Flow diversion for ophthalmic artery aneurysms. AJNR Am J Neuroradiol 2016;37:1866–9.[doi:10.3174/ajnr.A4835](http://dx.doi.org/10.3174/ajnr.A4835) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27256849 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czoxMDoiMzcvMTAvMTg2NiI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 51. Kallmes DF , Brinjikji W , Boccardi E , et al . Aneurysm study of pipeline in an observational registry (ASPIRe). Interv Neurol 2016;5:89–99.[doi:10.1159/000446503](http://dx.doi.org/10.1159/000446503) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27610126 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1159/000446503&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=27610126&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 52. Kaya T , Daglioglu E , Gurkas E , et al . Silk device for the treatment of intracranial aneurysms, part 2: factors related to clinical and angiographic outcome. Turk Neurosurg 2016;26:533–7.[doi:10.5137/1019-5149.JTN.14760-15.0](http://dx.doi.org/10.5137/1019-5149.JTN.14760-15.0) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27400099 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.5137/1019-5149.JTN.14760-15.0&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=27400099&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 53. Kim BM , Shin YS , Baik MW , et al . Pipeline embolization device for large/giant or fusiform aneurysms: an initial multi-center experience in Korea. Neurointervention 2016;11:10–17.[doi:10.5469/neuroint.2016.11.1.10](http://dx.doi.org/10.5469/neuroint.2016.11.1.10) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26958407 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.5469/neuroint.2016.11.1.10&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=26958407&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 54. Brown BL , Lopes D , Miller DA , et al . The fate of cranial neuropathy after flow diversion for carotid aneurysms. J Neurosurg 2016;124:1107–13.[doi:10.3171/2015.4.JNS142790](http://dx.doi.org/10.3171/2015.4.JNS142790) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26473786 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 55. Durst CR , Starke RM , Clopton D , et al . Endovascular treatment of ophthalmic artery aneurysms: ophthalmic artery patency following flow diversion versus coil embolization. J Neurointerv Surg 2016;8:919–22.[doi:10.1136/neurintsurg-2015-011887](http://dx.doi.org/10.1136/neurintsurg-2015-011887) pmid:http://www.ncbi.nlm.nih.gov/pubmed/26354944 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjc6IjgvOS85MTkiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 56. Jevsek M , Mounayer C , Seruga T . Endovascular treatment of unruptured aneurysms of cavernous and ophthalmic segment of internal carotid artery with flow diverter device pipeline. Radiol Oncol 2016;50:378–84.[doi:10.1515/raon-2016-0049](http://dx.doi.org/10.1515/raon-2016-0049) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27904445 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 57. Becske T , Brinjikji W , Potts MB , et al . Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the pipeline for uncoilable or failed aneurysms trial. Neurosurgery 2017;80:40–8.[doi:10.1093/neuros/nyw014](http://dx.doi.org/10.1093/neuros/nyw014) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28362885 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1093/neuros/nyw014&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=28362885&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 58. Bhogal P , Hellstern V , Bäzner H , et al . The use of flow diverting stents to treat para-ophthalmic aneurysms. Front Neurol 2017;8:381.[doi:10.3389/fneur.2017.00381](http://dx.doi.org/10.3389/fneur.2017.00381) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28824537 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 59. Miyachi S , Ohnishi H , Hiramatsu R , et al . Innovations in endovascular treatment strategies for large carotid cavernous aneurysms-the safety and efficacy of a flow diverter. J Stroke Cerebrovasc Dis 2017;26:1071–80.[doi:10.1016/j.jstrokecerebrovasdis.2016.12.023](http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.023) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28238529 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 60. Peschillo S , Caporlingua A , Resta MC , et al . Endovascular treatment of large and giant carotid aneurysms with flow-diverter stents alone or in combination with coils: a multicenter experience and long-term follow-up. Oper Neurosurg 2017;13:492–502.[doi:10.1093/ons/opx032](http://dx.doi.org/10.1093/ons/opx032) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 61. Xiao X , Mao G , Zhu J . Short-term follow-up for unruptured wide-necked intracranial aneurysms treated with pipeline embolization device. Chinese Journal of Cerebrovascular Diseases 2017;14:628–32.[doi:10.3969/j.issn.1672-5921.2017.12.003](http://dx.doi.org/10.3969/j.issn.1672-5921.2017.12.003) 62. Briganti F , Leone G , Ugga L , et al . Mid-term and long-term follow-up of intracranial aneurysms treated by the p64 flow modulation device: a multicenter experience. J Neurointerv Surg 2017;9:70–6.[doi:10.1136/neurintsurg-2016-012502](http://dx.doi.org/10.1136/neurintsurg-2016-012502) pmid:http://www.ncbi.nlm.nih.gov/pubmed/27439887 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjY6IjkvMS83MCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 63. Griessenauer CJ , Piske RL , Baccin CE , et al . Flow diverters for treatment of 160 ophthalmic segment aneurysms: evaluation of safety and efficacy in a multicenter cohort. Neurosurgery 2017;80:726–32.[doi:10.1093/neuros/nyw110](http://dx.doi.org/10.1093/neuros/nyw110) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28327931 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 64. Miyachi S , Hiramatsu R , Ohnishi H , et al . Usefulness of the pipeline embolic device for large and giant carotid cavernous aneurysms. Neurointervention 2017;12:83–90.[doi:10.5469/neuroint.2017.12.2.83](http://dx.doi.org/10.5469/neuroint.2017.12.2.83) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28955510 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.5469/neuroint.2017.12.2.83&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=28955510&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 65. Byvaltsev VA , Makhambetov YT , Stepanov IA , et al . Outcome analysis of the flow diversion with pipeline embolization device for the surgical treatment of unruptured large and giant paraclinoid carotid aneurysms. Annals RAMS 2018;73:16–22.[doi:10.15690/vramn918](http://dx.doi.org/10.15690/vramn918) 66. Jinguei L , Guilin L , Shengpan C . Roles of pipeline embolization device in combination with coils in the treatment of large and giant unruptured internal carotid artery aneurysms. Chinese Journal of Cerebrovascular Diseases 2018;15:4–9.[doi:10.3969/j.issn.1672-5921.2018.01.002](http://dx.doi.org/10.3969/j.issn.1672-5921.2018.01.002) 67. Killer-Oberpfalzer M , Kocer N , Griessenauer CJ , et al . European multicenter study for the evaluation of a dual-layer flow-diverting stent for treatment of wide-neck intracranial aneurysms: the European flow-redirection intraluminal device study. AJNR Am J Neuroradiol 2018;39:841–7.[doi:10.3174/ajnr.A5592](http://dx.doi.org/10.3174/ajnr.A5592) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29545252 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzOS81Lzg0MSI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 68. ReXiaTi N , AiKeReMu R , KaDeEr K , et al . Short-term efficacy of pipeline embolization device for treating complex intracranial aneurysms. Biomed Mater Eng 2018;29:137–46.[doi:10.3233/BME-171718](http://dx.doi.org/10.3233/BME-171718) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29457589 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 69. Too L , Shijie N , Zong Z . The application or pipeline embolization device in treating intracranial aneurysms located between cavernous sinus segment and ophthalmic artery segment. Journal of Interventional Radiology 2018;27:1127–32.[doi:10.3969/j.issn.1008-794X.2018.12.002](http://dx.doi.org/10.3969/j.issn.1008-794X.2018.12.002) 70. Yanling G , Fangqiang P , Shubin T . Medium and long-term effects of pipeline embolization device for the treatment of large and giant intracranial anterior circulation aneurysms. Chinese Journal of Cerebrovascular Diseases 2018;15:16–20.[doi:10.3969/j.issn.1672-5921.2018.01.004](http://dx.doi.org/10.3969/j.issn.1672-5921.2018.01.004) 71. Silva MA , See AP , Khandelwal P , et al . Comparison of flow diversion with clipping and coiling for the treatment of paraclinoid aneurysms in 115 patients. J Neurosurg 2018:1–8.[doi:10.3171/2018.1.JNS171774](http://dx.doi.org/10.3171/2018.1.JNS171774) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29932380 72. Pierot L , Spelle L , Berge J , et al . Feasibility, complications, morbidity, and mortality results at 6 months for aneurysm treatment with the flow re-direction endoluminal device: report of SAFE study. J Neurointerv Surg 2018;10:765-770.[doi:10.1136/neurintsurg-2017-013559](http://dx.doi.org/10.1136/neurintsurg-2017-013559) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29352057 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 73. Oishi H , Teranishi K , Yatomi K , et al . Flow diverter therapy using a pipeline embolization device for 100 unruptured large and giant internal carotid artery aneurysms in a single center in a Japanese population. Neurol Med Chir 2018;58:461–7.[doi:10.2176/nmc.oa.2018-0148](http://dx.doi.org/10.2176/nmc.oa.2018-0148) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30298832 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 74. Griessenauer CJ , Thomas AJ , Enriquez-Marulanda A , et al . Comparison of pipeline embolization device and flow re-direction endoluminal device flow diverters for internal carotid artery aneurysms: a propensity score-matched cohort study. Neurosurgery 2019;85:E249–55.[doi:10.1093/neuros/nyy572](http://dx.doi.org/10.1093/neuros/nyy572) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30541114 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1093/neuros/nyy572&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=30541114&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 75. Oğuz Şükrü , Tabakci Ömer Naci , Uysal E , et al . Pipeline flex embolization device (PED flex) for the treatment of intracranial aneurysms: periprocedural outcomes and first-year angiographic results. Turk J Med Sci 2019;49:1640–6.[doi:10.3906/sag-1906-116](http://dx.doi.org/10.3906/sag-1906-116) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31655536 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 76. Wang Z , Tian Z , Li W , et al . Variation of mass effect after using a flow diverter with adjunctive coil embolization for symptomatic unruptured large and giant intracranial aneurysms. Front Neurol 2019;10:1191.[doi:10.3389/fneur.2019.01191](http://dx.doi.org/10.3389/fneur.2019.01191) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31798519 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3389/fneur.2019.01191&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=31798519&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 77. Kühn AL , Kan P , Srinivasan V , et al . Flow diverter for endovascular treatment of intracranial mirror segment internal carotid artery aneurysms. Interv Neuroradiol 2019;25:4–11.[doi:10.1177/1591019918792536](http://dx.doi.org/10.1177/1591019918792536) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30081693 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 78. Pierot L , Spelle L , Berge J , et al . SAFE study (Safety and efficacy Analysis of FRED Embolic device in aneurysm treatment): 1-year clinical and anatomical results. J Neurointerv Surg 2019;11:184–9.[doi:10.1136/neurintsurg-2018-014261](http://dx.doi.org/10.1136/neurintsurg-2018-014261) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30297539 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjg6IjExLzIvMTg0IjtzOjQ6ImF0b20iO3M6MjY6Ii9uZXVyaW50c3VyZy8xNS85Lzg5Mi5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 79. Yan P , Zhang Y , Liang F , et al . Comparison of safety and effectiveness of endovascular treatments for unruptured intracranial large or giant aneurysms in internal carotid artery. World Neurosurg 2019;125:e385–91.[doi:10.1016/j.wneu.2019.01.082](http://dx.doi.org/10.1016/j.wneu.2019.01.082) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30703601 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 80. Meyers PM , Coon AL , Kan PT . SCENT Trial: one-year outcomes. Stroke 2019;50:1473–9.[doi:10.1161/STROKEAHA.118.024135](http://dx.doi.org/10.1161/STROKEAHA.118.024135) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 81. Sweid A , Rahm SP , Das S , et al . Safety and efficacy of bilateral flow diversion for treatment of anterior circulation cerebral aneurysms. World Neurosurg 2019;130:e1116–21.[doi:10.1016/j.wneu.2019.07.115](http://dx.doi.org/10.1016/j.wneu.2019.07.115) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31330338 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 82. Daglioglu E , Akmangit I , Acik V , et al . The experience of the Derivo® embolisation device in intracranial aneurysms. Turk Neurosurg 2020;30:30–7.[doi:10.5137/1019-5149.JTN.25776-19.2](http://dx.doi.org/10.5137/1019-5149.JTN.25776-19.2) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31049921 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.5137/1019-5149.JTN.25776-19.2&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=31049921&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 83. Piano M , Valvassori L , Lozupone E , et al . FRED Italian registry: a multicenter experience with the flow re-direction endoluminal device for intracranial aneurysms. J Neurosurg 2020;133:174–81.[doi:10.3171/2019.1.JNS183005](http://dx.doi.org/10.3171/2019.1.JNS183005) 84. Binh NT , Luu VD , Thong PM , et al . Flow diverter stent for treatment of cerebral aneurysms: a report of 130 patients with 134 aneurysms. Heliyon 2020;6:e03356.[doi:10.1016/j.heliyon.2020.e03356](http://dx.doi.org/10.1016/j.heliyon.2020.e03356) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32055743 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 85. Foreman PM , Salem MM , Griessenauer CJ , et al . Flow diversion for treatment of partially thrombosed aneurysms: a multicenter cohort. World Neurosurg 2020;135:e164–73.[doi:10.1016/j.wneu.2019.11.084](http://dx.doi.org/10.1016/j.wneu.2019.11.084) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31760188 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 86. Lv X , Yu J , Liao T , et al . Unruptured giant intracavernous aneurysms untolerate internal carotid artery occlusion test: untreated and treated with flow-diversion. Neuroradiol J 2020;33:105–11.[doi:10.1177/1971400919898109](http://dx.doi.org/10.1177/1971400919898109) pmid:http://www.ncbi.nlm.nih.gov/pubmed/31948343 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 87. Nurminen V , Raj R , Numminen J , et al . Flow diversion for internal carotid artery aneurysms: impact of complex aneurysm features and overview of outcome. Clin Neurol Neurosurg 2020;193:105782.[doi:10.1016/j.clineuro.2020.105782](http://dx.doi.org/10.1016/j.clineuro.2020.105782) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32200219 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 88. Link TW , Carnevale JA , Goldberg JL , et al . Multiple pipeline embolization devices improves aneurysm occlusion without increasing morbidity: a single center experience of 140 cases. J Clin Neurosci 2021;86:129–35.[doi:10.1016/j.jocn.2021.01.016](http://dx.doi.org/10.1016/j.jocn.2021.01.016) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33775316 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 89. Kunert P , Wójtowicz K , Żyłkowski J , et al . Flow-diverting devices in the treatment of unruptured ophthalmic segment aneurysms at a mean clinical follow-up of 5 years. Sci Rep 2021;11:9206.[doi:10.1038/s41598-021-87498-z](http://dx.doi.org/10.1038/s41598-021-87498-z) pmid:http://www.ncbi.nlm.nih.gov/pubmed/33911105 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 90. Catapano JS , Koester SW , Srinivasan VM , et al . A comparative propensity-adjusted analysis of microsurgical versus endovascular treatment of unruptured ophthalmic artery aneurysms. J Neurosurg 2021:1–6.[doi:10.3171/2021.5.JNS211149](http://dx.doi.org/10.3171/2021.5.JNS211149) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34653974 91. Lee H , Marotta TR , Spears J , et al . Endovascular treatment of cavernous carotid artery aneurysms: a 10-year, single-center experience. Neuroradiol J 2021;34:568–74.[doi:10.1177/19714009211013487](http://dx.doi.org/10.1177/19714009211013487) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34159822 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 92. Fehrenbach MK , Dietel E , Wende T , et al . Management of cavernous carotid artery aneurysms: a retrospective single-center experience. Brain Sci 2022;12. doi:[doi:10.3390/brainsci12030330](http://dx.doi.org/10.3390/brainsci12030330). [Epub ahead of print: 28 02 2022].pmid:http://www.ncbi.nlm.nih.gov/pubmed/35326286 93. Fujii T , Teranishi K , Yatomi K , et al . Long-term follow-up results after flow diverter therapy using the pipeline embolization device for large or giant unruptured internal carotid artery aneurysms: single-center retrospective analysis in the Japanese population. Neurol Med Chir 2022;62:19–27.[doi:10.2176/nmc.oa.2021-0203](http://dx.doi.org/10.2176/nmc.oa.2021-0203) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34707069 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 94. Lee JK , Choi JH , Kim B-S , et al . Recovery from cranial nerve symptoms after flow diversion without coiling for unruptured very large and giant ICA aneurysms. AJNR Am J Neuroradiol 2022:ajnr;ajnr.A7498v1.[doi:10.3174/ajnr.A7498](http://dx.doi.org/10.3174/ajnr.A7498) 95. Xu C , Wu P , Sun B . Incomplete occlusion and visual symptoms of peri-ophthalmic aneurysm after treatment with a pipeline embolization device: a multi-center cohort study. Acta Neurochir 2022;130.[doi:10.1007/s00701-022-05239-1](http://dx.doi.org/10.1007/s00701-022-05239-1) 96. Turfe ZA , Brinjikji W , Murad MH , et al . Endovascular coiling versus parent artery occlusion for treatment of cavernous carotid aneurysms: a meta-analysis. J Neurointerv Surg 2015;7:250–5.[doi:10.1136/neurintsurg-2014-011102](http://dx.doi.org/10.1136/neurintsurg-2014-011102) pmid:http://www.ncbi.nlm.nih.gov/pubmed/24658655 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTE6Im5ldXJpbnRzdXJnIjtzOjU6InJlc2lkIjtzOjc6IjcvNC8yNTAiO3M6NDoiYXRvbSI7czoyNjoiL25ldXJpbnRzdXJnLzE1LzkvODkyLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 97. Choi JH , Lee KS , Kim B-S , et al . Treatment outcomes of large and giant intracranial aneurysms according to various treatment modalities. Acta Neurochir 2020;162:2745–52.[doi:10.1007/s00701-020-04540-1](http://dx.doi.org/10.1007/s00701-020-04540-1) pmid:http://www.ncbi.nlm.nih.gov/pubmed/32827268 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 98. Silva MA , See AP , Dasenbrock HH , et al . Vision outcomes in patients with paraclinoid aneurysms treated with clipping, coiling, or flow diversion: a systematic review and meta-analysis. Neurosurg Focus 2017;42:E15.[doi:10.3171/2017.3.FOCUS1718](http://dx.doi.org/10.3171/2017.3.FOCUS1718) pmid:http://www.ncbi.nlm.nih.gov/pubmed/28565983 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.3171/2017.3.FOCUS1718&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 99. Zheng F , Chen X , Zhou J , et al . Clipping versus coiling in the treatment of oculomotor nerve palsy induced by unruptured posterior communicating artery aneurysms: a meta-analysis of cohort studies. Clin Neurol Neurosurg 2021;206:106689.[doi:10.1016/j.clineuro.2021.106689](http://dx.doi.org/10.1016/j.clineuro.2021.106689) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34052051 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 100. Gaberel T , Borha A , di Palma C , et al . Clipping versus coiling in the management of posterior communicating artery aneurysms with third nerve palsy: a systematic review and meta-analysis. World Neurosurg 2016;87:498–506.[doi:10.1016/j.wneu.2015.09.026](http://dx.doi.org/10.1016/j.wneu.2015.09.026) [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1016/j.wneu.2015.09.026&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=26409080&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 101. Verdú E , Ceballos D , Vilches JJ , et al . Influence of aging on peripheral nerve function and regeneration. J Peripher Nerv Syst 2000;5:191–208.[doi:10.1111/j.1529-8027.2000.00026.x](http://dx.doi.org/10.1111/j.1529-8027.2000.00026.x) pmid:http://www.ncbi.nlm.nih.gov/pubmed/11151980 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1046/j.1529-8027.2000.00026.x&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=11151980&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000166040400002&link_type=ISI) 102. Becske T , Kallmes DF , Saatci I , et al . Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology 2013;267:858–68.[doi:10.1148/radiol.13120099](http://dx.doi.org/10.1148/radiol.13120099) [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1148/radiol.13120099&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=23418004&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) [Web of Science](http://jnis.bmj.com/lookup/external-ref?access_num=000319445400023&link_type=ISI) 103. Kallmes DF , Hanel R , Lopes D , et al . International retrospective study of the pipeline embolization device: a multicenter aneurysm treatment study. AJNR Am J Neuroradiol 2015;36:108–15.[doi:10.3174/ajnr.A4111](http://dx.doi.org/10.3174/ajnr.A4111) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25355814 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiIzNi8xLzEwOCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 104. Kaiser DPO , Boulouis G , Soize S , et al . Flow diversion for ICA aneurysms with compressive neuro-ophthalmologic symptoms: predictors of morbidity, mortality, and incomplete aneurysm occlusion. AJNR Am J Neuroradiol 2022;43:998–1003.[doi:10.3174/ajnr.A7550](http://dx.doi.org/10.3174/ajnr.A7550) pmid:http://www.ncbi.nlm.nih.gov/pubmed/35738674 [Abstract/FREE Full Text](http://jnis.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiYWpuciI7czo1OiJyZXNpZCI7czo4OiI0My83Lzk5OCI7czo0OiJhdG9tIjtzOjI2OiIvbmV1cmludHN1cmcvMTUvOS84OTIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 105. Kupersmith MJ , Stiebel-Kalish H , Huna-Baron R , et al . Cavernous carotid aneurysms rarely cause subarachnoid hemorrhage or major neurologic morbidity. J Stroke Cerebrovasc Dis 2002;11:9–14.[doi:10.1053/jscd.2002.123969](http://dx.doi.org/10.1053/jscd.2002.123969) pmid:http://www.ncbi.nlm.nih.gov/pubmed/17903849 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1053/jscd.2002.123969&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=17903849&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 106. Lylyk I , Scrivano E , Lundquist J , et al . Pipeline embolization devices for the treatment of intracranial aneurysms, single-center registry: long-term angiographic and clinical outcomes from 1000 aneurysms. Neurosurgery 2021;89:443:443–9.[doi:10.1093/neuros/nyab183](http://dx.doi.org/10.1093/neuros/nyab183) pmid:http://www.ncbi.nlm.nih.gov/pubmed/34098575 [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom) 107. Gawlitza M , Soize S , Manceau P-F , et al . Delayed intra-aneurysmal migration of a flow diverter construct after treatment of a giant aneurysm of the cavernous internal carotid artery. J Neuroradiol 2020;47:233–6.[doi:10.1016/j.neurad.2019.01.092](http://dx.doi.org/10.1016/j.neurad.2019.01.092) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30659891 [CrossRef](http://jnis.bmj.com/lookup/external-ref?access_num=10.1016/j.neurad.2019.01.092&link_type=DOI) [PubMed](http://jnis.bmj.com/lookup/external-ref?access_num=30659891&link_type=MED&atom=%2Fneurintsurg%2F15%2F9%2F892.atom)