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AbsTrACT
background The effects of thrombus imaging 
characteristics on procedural and clinical outcomes after 
ischemic stroke are increasingly being studied. These 
thrombus characteristics – for eg, size, location, and 
density – are commonly analyzed as separate entities. 
However, it is known that some of these thrombus 
characteristics are strongly related. Multicollinearity 
can lead to unreliable prediction models. We aimed to 
determine the distribution, correlation and clustering 
of thrombus imaging characteristics based on a large 
dataset of anterior- circulation acute ischemic stroke 
patients.
Methods We measured thrombus imaging 
characteristics in the MR CLEAN Registry dataset, which 
included occlusion location, distance from the intracranial 
carotid artery to the thrombus (DT), thrombus length, 
density, perviousness, and clot burden score (CBS). We 
assessed intercorrelations with Spearman’s coefficient 
(ρ) and grouped thrombi based on 1) occlusion location 
and 2) thrombus length, density and perviousness using 
unsupervised clustering.
results We included 934 patients, of which 22% had 
an internal carotid artery (ICA) occlusion, 61% M1, 
16% M2, and 1% another occlusion location. All 
thrombus characteristics were significantly correlated. 
Higher CBS was strongly correlated with longer DT 
(ρ=0.67, p<0.01), and moderately correlated with 
shorter thrombus length (ρ=−0.41, p<0.01). In more 
proximal occlusion locations, thrombi were significantly 
longer, denser, and less pervious. Unsupervised clustering 
analysis resulted in four thrombus groups; however, the 
cohesion within and distinction between the groups 
were weak.
Conclusions Thrombus imaging characteristics are 
significantly intercorrelated – strong correlations 
should be considered in future predictive modeling 
studies. Clustering analysis showed there are no distinct 
thrombus archetypes – novel treatments should consider 
this thrombus variability.

InTroduCTIon
Multiple thrombus characteristics are increas-
ingly being studied for their effects on procedural 
and clinical outcomes after ischemic stroke.1–3 

Currently, the most straightforward way to assess 
the thrombus is via radiological imaging, mostly 
computed tomography (CT), since it is part of the 
standard- of- care diagnostic workup for stroke.4 
Thrombus imaging characteristics can provide 
information on the size and (micro)structure of 
the thrombus, which may be useful to improve and 
optimize treatment.

After administration of intravenous thrombolysis 
with alteplase (IVT), the lysis process of the clot 
can be influenced by the permeability5 6 and size of 
the thrombus.7 8 Thrombus density, which has been 
associated with thrombus histology9 and etiology,10 
can also affect the chance of recanalization success 
after IVT.11 In addition, thrombus density may 
suggest the use of specific endovascular treatment 
(EVT) strategies.12 The optimal size and posi-
tioning of the EVT stent- retriever is dependent on 
thrombus length,13 and EVT success can be affected 
by thrombus volume.14

As such, there is a whole spectrum of thrombus 
imaging characteristics influencing treatment, and 
these characteristics are not independent from 

WHAT Is ALrEAdY KnoWn on THIs ToPIC
 ⇒ Collinearity of thrombus imaging characteristics 
in predictive models of acute ischemic stroke is 
commonly disregarded.

WHAT THIs sTudY Adds
 ⇒ We presented distributions, intercorrelations 
and clustering analysis of thrombus imaging 
characteristics measured in 937 acute 
ischemic stroke patients. Thrombus imaging 
characteristics are significantly intercorrelated, 
but there are no distinct thrombus archetypes.

HoW THIs sTudY MIGHT AFFECT rEsEArCH, 
PrACTICE or PoLICY

 ⇒ Strong correlations between thrombus 
characteristics should be considered in future 
predictive models in acute ischemic stroke. The 
continuous spectrum and specific variability of 
thrombus characteristics need to be addressed 
when developing novel treatment approaches.
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each another. Including multicollinearity in prediction models 
reduces their statistical significance and should therefore be 
accounted for. Moreover, in case of strong correlations, there 
is no added value in measuring all parameters and a reduced 
number of thrombus measures may be sufficient.

Thrombi are commonly classified by occlusion location, 
etiology, and/or histopathology.3 Currently, occlusion loca-
tion is the only thrombus characteristic that is used for 
treatment selection.4 However, the occlusion location does 
not account for the biomechanical characteristics of the 
clot, which actually may have a larger effect on treatment 
response and chance of successful revascularization. Alterna-
tively, thrombi are also classified based on stroke etiology as 
eg, cardioembolic, atherosclerotic or cryptogenic, according 
to the TOAST criteria .15 With different thrombus origins, 
it could be expected that thrombi show distinct (imaging) 
features as part of typical thrombus archetypes. Clustering 
techniques allow for grouping of thrombus characteristics, 
and therefore, may determine interrelated imaging charac-
teristics that distinguish typical groups of thrombi. Certain 
sets of thrombus characteristics may be associated with a 
better response to specific (combinations of) treatments, such 
as IVT with alteplase or tenecteplase, or specific EVT tech-
niques/devices. For example, thrombolysis was shown to be 
successful in small, distal, pervious thrombi, whereas its bene-
ficial effect is being debated for large, proximal, impermeable 
thrombi.

In this study, we present a detailed analysis of interrela-
tions of thrombus imaging characteristics on a large data 
set of EVT- treated acute ischemic stroke patients. Specifi-
cally, we aim to provide information on the distribution and 
correlation of thrombus imaging characteristics and to study 
whether thrombi can be grouped based on their imaging 
characteristics.

METHods
Patient selection
We included patients from the MR CLEAN Registry, a multi-
center prospective observational registry of all patients under-
going EVT for acute ischemic stroke in the Netherlands.16 This 
registry was approved by the central medical ethics committee 
of the Erasmus Medical Center Rotterdam, which served as the 
review board of all participating centers and granted permis-
sion to carry out the study as a registry (MEC- 2014–235). All 
patients or legal representatives were provided with oral and 
written information on the registry and had the opportunity to 
withdraw consent to use their data.

We included acute ischemic stroke patients aged 18 or 
older, with an anterior circulation occlusion who underwent 
EVT (defined as groin puncture with the intent of thrombec-
tomy) less than 390 minutes after stroke onset between March 
2014 and November 2017. Patients without contraindications 
received 0.9 mg/kg of intravenous alteplase before EVT. The 
EVT approach and choice of material was left to the individual 
interventionalist. All patients underwent a standardized stroke 
imaging protocol at baseline, consisting of baseline non- contrast 
computed tomography (NCCT) followed by single arterial- 
phase computed tomography angiography (CTA). Other imaging 
modalities, such as CT perfusion, were acquired at the discretion 
of the treating physician. Patients with thick- slice (>2.5 mm) CT 
imaging, and with NCCT and CTA images not acquired within 
30 minutes from each other were excluded. Source data for this 
study are not available as we did not obtain patient approval 
for sharing individual, coded patient data. All analytic methods, 

codes, and results are available from the corresponding author 
on reasonable request.

data collection
The thin- slice NCCT and CTA images were acquired in GE 
Medical Systems, Philips, Siemens, or Toshiba scanners with a 
median tube peak voltage of 100 (100- 120) kV for CTA, and 
120 (100- 120) kV for NCCT. The median exposure was 156 
(73- 221) mA·s for CTA and 301 (240- 394) mA·s for NCCT. All 
details on the image acquisition parameters and protocols can be 
found in online supplemental table S1.

The MR CLEAN Registry imaging core laboratory consisting 
of 31 interventional neuroradiologists (with at least 5 years 
of experience assessing CTA scans in routine clinical prac-
tice) assessed the occlusion location and the clot burden score 
(CBS) based on the contrast- filling defects found on baseline 
CTA. The CBS is a 10- point scale assessing the extension of the 
occlusion: the 10 points are divided between vessel segments 
in the anterior circulation, and for each occluded segment 
the corresponding points are deducted from 10.16 Therefore, 
more occlusive thrombi have lower CBS. Core- lab members 
were blinded to all clinical information (demographic, treat-
ment and outcome data) except symptom side.16 Each rater 
assessed a subset of the total number of cases following the 
provided training and guidelines.

We additionally measured the following radiological thrombus 
characteristics: distance from the internal carotid artery (ICA) 
terminus to the thrombus (DT), thrombus length, thrombus 
density, and thrombus perviousness. Thrombus measurements 
of patients included between March 2014 and June 2016 were 
already available.1 For patients included between June 2016 
and November 2017, additional measurements were performed 
similar to Bruna et al.1 These measurements were performed 
by trained observers (AAEB, JB, JWH, KRK, MK, MLT, NA, 
NAT, NB, and PRK) who were blinded to all clinical informa-
tion except symptom side. Each observer was assigned a unique 
subset of the total number of cases. To ensure consistency and 
homogeneity across the measurements, the observers received 
training and guidelines to place the markers, including defini-
tions of each vessel segment and a scheme similar to the one 
shown in figure 1A,B. Difficult cases (such as bifurcated or very 
long thrombi and cases without distal collateral filling) were 
marked and discussed among the group of observers. If the 
marker- placement remained unclear, the case was reviewed by 
a senior radiologist.

For these measurements, the thin- slice NCCT and CTA images 
were corregistered using Elastix’ rigid- registration.17 Scans with 
uncorrectable registration errors, imaging artifacts (eg, beam 
hardening, metal artifacts), excessive noise, poor CTA contrast 
opacification, or an incomplete field of view were excluded. 
Partial occlusions (thrombi occluding 50% of the vessel diam-
eter), bilateral thrombi, too short thrombi (<2 mm), thrombi 
very close to bone (affected by partial volume/blooming artifact 
of bone), and/or calcified emboli were also excluded.1

For each occlusion, we placed up to nine markers along the 
occluded artery: one marker defining the ICA- terminus, up to 
three markers along the vessel segment between the ICA- terminus 
and the proximal thrombus border, two markers defining the 
thrombus’ proximal and distal borders, and three markers in the 
proximal, middle, and distal parts of the thrombus (figure 1). 
These markers were simultaneously placed on the corregistered 
NCCT and CTA scans using ITK- snap software.18 We used three 
views (axial, sagittal, and coronal) for the marker placement. The 
occlusion extension was determined based on the contrast- filling 
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defects found on CTA, and aided by the NCCT hyperdense 
artery sign if present. Because of NCCT was performed before 
CTA, hyperdensities are expected to come from the thrombus 
rather than residual contrast.

DT was computed as the total path length between the ICA- 
terminus and the proximal thrombus border marker. DT is 
thereby a measure of thrombus distality with respect to the ICA- 
terminus. If the proximal part of the thrombus was located prox-
imal to the ICA- terminus, DT was set to zero. Thrombus length 
was computed as the total path length between the proximal and 
distal thrombus border markers. The three in- thrombus markers 
were used to define 1 mm radius spherical regions of interest, 
which were used to compute the average thrombus density and 
perviousness values, as described previously.1

statistical analyses
Our analysis includes three main sections: summary statistics 
which describes the methods to present characteristic distribu-
tions, correlation analyses to assess the collinearity of these char-
acteristics, and clustering of thrombus imaging characteristics 
to determine whether typical thrombus archetypes with distinct 
imaging features can be found. We used Python’s statistics library 
for the statistical analysis, Seaborn library for data visualizations 
and scikit- learn library for clustering analysis. We set the signifi-
cance level for all analyses at p<0.05.

Summary statistics
For numerical variables, we presented summary statistics as 
median and interquartile range (IQR). For categorical variables, 
we presented summary statistics as frequencies and percentages. 
Baseline characteristics were compared between the currently 
included patient sample and the overall MR CLEAN Registry 

population. For between- group comparisons, the Kruskal- Wallis 
and/or Mann- Whitney- U tests were used to compare medians, 
and    tests to compare frequencies. Post- hoc analyses were 
adjusted with Bonferroni corrections for multiple testing.

Correlation analyses
We included the following variables in our correlation analysis: 
DT, thrombus length, thrombus density, thrombus perviousness, 
and CBS. We generated bivariate scatterplots and computed the 
correlation using the pairwise Spearman’s correlation coeffi-
cient, ρ, for all occlusion locations. We evaluated the correlation 
strength as follows: 0.10 ≤ |ρ|<0.40, weak correlation; 0.40 ≤ 
|ρ|<0.60, moderate correlation; |ρ|≥0.60, strong correlation. 
In addition, we built pairwise linear regressions to further assess 
the association and variability between the variables. Although 
a smooth polynomial relationship like LOESS would be more 
appropriate to further assess the association and trend of the 
correlated variables, linear regressions provide simple models to 
explore the spectrum of thrombus characteristics. These analyses 
were performed for all thrombi combined and also per occlusion 
location (ICA, M1, and M2).

Clustering analysis
We used a classical, widely- used, unsupervised learning algo-
rithm to perform the clustering: Hartigan- Wong k- means unsu-
pervised clustering.19 For n number of features and k cluster 
centroids, this method aims to minimize the Euclidean distance 
between each point in the n- dimensional space and its closest 
cluster centroid ki, that is, to minimize the sum of the squared 
error (SSE). The following thrombus characteristics were used as 
features: thrombus length, density, and perviousness. All variables 
were standardized (transformed to a mean of 0 and a standard 

Figure 1 Thrombus markers. A) Schematic overview of thrombus marker placement, axial view. (B) Schematic overview of thrombus marker 
placement, coronal view. (C) Axial view of CTA and NCCT scans showing a left- MCA occlusion and placed markers. To visualize the markers, a zoom- 
in of the occlusion is displayed and the markers are circled in their corresponding color in the image in the lower row. These circles do not represent 
the 1 mm radius spherical regions of interest used to compute density and perviousness. (D) Coronal view of the CTA and NCCT scans displayed in C 
showing a left- MCA occlusion and placed markers. A closer view of the occlusion is displayed in the image in the lower row, with the markers circled 
in their corresponding color. A1, anterior cerebral artery A1 segment; CTA, computed tomography angiography; ICA, internal carotid artery; M1, middle 
cerebral artery M1 segment; M2, middle cerebral artery M2 segment; MCA, middle cerebral artery; NCCT, non- contrast computed tomography.
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deviation of 1), such that their weights evenly contribute. We 
selected the optimal number of clusters based on three comple-
mentary techniques: the elbow method, the calculation of the 
silhouette coefficient, and the calculation of the Davies- Bouldin 
coefficient.20 For the elbow method, we computed the SSE for 
each cluster to find the optimal k value. By definition, the SSE 
decreases with an increasing number of clusters. The elbow- 
point indicates the optimal trade- off between the SSE and the 
number of clusters, and is found where the decrease in the SSE 
becomes linear. The silhouette coefficient is a measure of cohe-
sion within a cluster and separation between the clusters, and 
ranges between −1 and 1. The higher the silhouette coefficient, 
the better the cohesion within the clusters and better separation 
from the other groups. The Davies- Bouldin coefficient is also a 
measure of intra- cluster similarity and inter- cluster difference. 
It is computed as the average ratio between within- cluster and 
between- cluster distances, and therefore, smaller Davies- Bouldin 
values indicate better clusters. For each k, we ran the algorithm 
for 1000 iterations with 100 different initial configurations of 
the cluster centroids.

Online supplemental table 2 includes definitions of associa-
tion, correlation, collinearity and unsupervised clustering for 
additional information.

rEsuLTs
Our study population consisted of 934 out of3637 patients 
from the MR CLEAN Registry (online supplemental figure S1). 
Included patients had a median age of 72 (IQR 62–80) years. 
Median National Institutes of Health Stroke Scale (NIHSS) score 
at baseline was 15 (IQR 11–20). Baseline characteristics of our 
study cohort and the full MR CLEAN Registry cohort can be 
found in online supplemental table S3. Patients in our study 
were more often presented directly to an EVT- capable center 
(ie, no interhospital transfer), and correspondingly their median 
onset to groin puncture time was slightly shorter (188 [IQR 
139–246] min vs 195 [IQR 150–260] min, p<0.01). NIHSS 
scores at 24–48 hours were lower in our study population (9 
[IQR 3–16] vs 10 [IQR 4–17], p=0.02) compared with the full 
MR CLEAN Registry cohort.

Figure 2 Thrombus imaging characteristics. The diagonal shows the histograms of DT, thrombus length, density, perviousness and CBS. The graphs 
below the diagonal show bivariate scatter plots, Spearman’s correlation coefficient (ρ) and significance level of the correlation, where ** means 
p<0.01. The plots above the diagonal show bivariate scatter plots with a linear fit. CBS, clot burden score; DT, distance from the internal carotid artery 
terminus to the thrombus; HU, Hounsfield units; mm, millimeters; thr, thrombus.
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Summary statistics of the thrombus imaging characteristics can 
be found in online supplemental table S4. The most common 
occlusion location was the M1 segment (61%), followed by the 
ICA (22%), and the M2 (16%). The distributions and correlations 
of thrombus imaging characteristics are visualized in figure 2 
and online supplemental table S5. We found that higher CBS 
was strongly correlated with longer DT (ρ=0.68, p<0.01), and 
moderately correlated with shorter thrombus length (ρ=−0.41, 
p<0.01). These correlations are individually visualized in online 
supplemental figure S2. The other correlations, although statisti-
cally significant, were weak (|ρ|<0.40).

subgroup analysis: occlusion location
A between- group comparison of the thrombus characteristics per 
occlusion location can be found in table 1. Thrombus characteris-
tics significantly differed per occlusion location. Thrombi located 
in the ICA were longer, denser, and less pervious compared with 
M1 and M2 thrombi. Similarly, M1 thrombi were longer, denser, 
and less pervious compared with M2 thrombi. More details on 
the significance level of pairwise comparisons can be found in 
online supplemental table S6.

Similar to figure 2, the distribution and correlations of these 
characteristics, color- coded by occlusion location, can be found 
in online supplemental figure S3 and online supplemental table 
S7. All found correlations were weak (|ρ|<0.40).

Clustering analysis
Both the elbow method and silhouette coefficients indicated that 
the optimal number of clusters lay around 4 and 6 (figure 3A,B). 
The low silhouette coefficients, with values all under 0.30, indi-
cate that the clusters cannot be clearly discerned. Davies- Bouldin 
coefficients indicated that the optimal number of clusters was 
in the range of 4–10, with two local minima at k=6 and k=9 
(figure 3C). Based on the three methods, we chose to continue 
our analysis with four clusters. A 3D visualization of the 
thrombus features of the four clusters is displayed in figure 3D, 
next to a similar visualization clustered by occlusion location 
(figure 3E). The cluster centroids can be found in online supple-
mental table S8. The distribution characteristics for each cluster 
are also summarized in online supplemental table S8. Cluster 
2 consists of longer, denser, and less pervious thrombi, while 
cluster four includes shorter and less dense thrombi, with higher 

Figure 3 Finding the optimal number of clusters. (A)SSE as a function of the number of clusters. The elbow point is found around 4–6, after which 
the decrease in SSE becomes linear. (B) Silhouette coefficients as a function of the number of clusters. The highest (and therefore, preferred) silhouette 
coefficients are found around 4–6. (C) Davies- Bouldin coefficients as a function of the number of clusters. Lower coefficients indicate better clustering. 
From k=4 onwards, Davies- Bouldin coefficients showed similar values, with two local minima at k=6 and k=9. (D) 3D visualization of thrombus 
imaging features clustered by 4- means unsupervised clustering. (E) 3D visualization of thrombus imaging features clustered by occlusion location. 
SSE, sum of the squared error.

Table 1 Thrombus imaging characteristics per occlusion location 
(ICA, M1, and M2).

Thrombus imaging 
characteristics, median 
(IQr) ICA, n=202 M1, n=566 M2, n=148 p- value

DT (mm) 0 (0–0) 12 (6–18) 30 (22–55) <0.01

Thrombus lengthα (mm) 26 (17–43) 18 (12–27) 12 (9–22) <0.01

Thrombus density (HU) 55 (49–61) 50 (44–57) 44 (38–50) <0.01

Thrombus perviousness 
(HU)

3 (- 3–12) 5 (- 2–12) 6 (- 1–18) 0.02

CBSβ 3 (1–4) 6 (6–7) 9 (9–9) <0.01

Missing values: α1,β191.
CBS, clot burden score; DT, distance from ICA- terminus to the thrombus; HU, 
Hounsfield units; ICA, internal carotid artery; IQR, interquartile range; M1, middle 
cerebral artery M1 segment; M2, middle cerebral artery M2 segment; mm, 
millimeters.
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perviousness values. Cluster 1 and 3 reflect a mixture of both: 
shorter thrombi, less pervious, with lower and higher densities, 
respectively.

dIsCussIon
In our analysis of thrombus imaging characteristics in EVT- 
treated acute ischemic stroke patients, we found that all assessed 
thrombus imaging characteristics were significantly intercor-
related. Higher CBS was strongly correlated with longer DT 
and was moderately correlated with shorter thrombus length. 
These correlations became weak when stratifying per occlusion 
location. Longer, denser, and less pervious thrombi were mostly 
found in more proximal occlusion locations. Our clustering 
analysis suggests that thrombus imaging characteristics form a 
continuum, and that no typical thrombus types can be identified 
similar to the TOAST classification.

To our knowledge, this is the largest dataset of thrombus 
imaging characteristics of acute ischemic stroke patients. 
Previous studies have focused on the association of thrombus 
imaging characteristics with treatment and patient outcome, and 
have partially assessed associations between thrombus charac-
teristics.21 Other studies have related thrombus imaging charac-
teristics to their histopathology,22 etiology,23 and biomechanical 
characteristics.24 The statistical models used to study these asso-
ciations between thrombus characteristics and outcomes do not 
commonly account for the collinearity between these character-
istics. This collinearity can lead to unreliable or unrepresenta-
tive model results, or a reduction in statistical significance. In 
a multivariable regression, collinearity hinders the relationship 
of the independent variable with the dependent one, since the 
independent variables change simultaneously. This implies that, 
although the overall predictions are unaffected, the regression 
coefficients, corresponding standard errors and significance 
can be ‘wrongly’ estimated.25 Moreover, in case of collinearity, 
the predictive value can be assigned to one of the parameters 
whereas the relation with outcome could also be affected by 
another collinear parameter.

Although the results of our study do not imply a direct change 
in current clinical practice, they illustrate the importance of 
studying collinearity when building predictive models – which 
are used to draw conclusions of treatment effects and outcomes 
consequence of current clinical practice.

In our study, we found that the correlations between most 
thrombus characteristics are significant but weak. This means 
there is still a large variety of other thrombus characteristics that 
are given a single thrombus variable. This was also reflected in 
our clustering analysis. When clustering by occlusion location, 
we found that even if the distributions of length, density, and 
perviousness significantly differed between the groups, some 
overlap still existed. With unsupervised clustering, thrombi 
were classified based on their length, density and perviousness. 
However, we did not observe clearly distinct thrombus arche-
types, but rather found that thrombus imaging characteristics 
form a continuum which hinders their clustering.

In current clinical practice, occlusion location (among other 
baseline characteristics) determines EVT eligibility. Stroke guide-
lines indicate that patients with proximal occlusions are eligible 
for EVT,4 whereas the eligibility of (more distal) medium vessel 
occlusion stroke is currently being researched. The definition of, 
eg, M1, M2, and M3 segments can be challenging and highly 
dependent on the observer.26 DT better defines the distality of 
the occlusion.27 However, DT does not take anatomical land-
marks such as bifurcations into account (which are used to deter-
mine occlusion location) and can be critical for the chance of 

EVT success. In our results, we saw that for the same DT, the 
patient could either have an M1 or M2 occlusion. Unfortunately, 
the number of M3 occlusions in our database was insufficient to 
further study this relation.

We found that thrombus imaging characteristics significantly 
differ per occlusion location and that some of these characteris-
tics are moderately and strongly correlated with CBS. Currently, 
the manual assessment of thrombus characteristics is time- 
consuming and requires thin- slice CT imaging.1 On the other 
hand, assessment of occlusion location and CBS is commonly 
done in clinical practice/studies, is less time- consuming than 
manual thrombus measurements, and does not require thin- 
slice images.16 Correlations between occlusion- location/CBS 
and DT/length/density/perviousness offer the possibility of 
uncomplicated characterization of the thrombus, which could 
ultimately lead to a reduction of time- consuming assessments. 
With the enhanced development of automated measurements 
and thrombus segmentations, quantitative characterization of 
the thrombus might be optimized.28

Finally, in- silico models that simulate stroke onset, treatment, 
and outcome require, among others, an accurate and quanti-
tative representation of the thrombus.29 Combining thrombus 
imaging, histological and biomechanical properties can help to 
capture the whole spectrum of thrombus characteristics needed 
for such in- silico modeling. Once the correlations between 
these characteristics are well- established, typical thrombi can be 
sampled from such distributions and can be used to study treat-
ment success in different scenarios. Our study contributes to the 
quantification of such correlations.

Limitations
Our study had some limitations. We only included patients 
with available thin- slice imaging, which led to a high exclusion 
rate, and therefore, to selection bias (less intra- hospital trans-
fers, shorter onset- to- groin times, and lower NIHSS scores at 
24–48 hours compared with the whole MR CLEAN Registry 
population).

Occlusion location and thrombus measurements were not 
assessed by the same group of observers (MR CLEAN Registry 
core lab for occlusion location and CBS vs trained observers 
for DT, thrombus length, density, and perviousness) nor in the 
same CT modality (CTA only by MR CLEAN Registry core lab 
vs NCCT and CTA by trained observers). This might create 
some incongruencies between occlusion location and DT, espe-
cially close to the ICA- terminus. For example: on CTA, lack of 
contrast in distal ICA- terminus can be scored as an M1 occlu-
sion (expected DT≠0), while when looking at both NCCT and 
CTA simultaneously, it is scored as an ICA- T occlusion (expected 
DT=0). In addition, because occlusion location was defined as 
the most proximal occluded (intracranial) vessel segment on 
CTA, patients with multiple occlusions might have been classi-
fied as one occlusion location, while the thrombus characteris-
tics were measured in a more distal occluded segment where the 
NCCT hyperdense artery sign was visible.

The measured thrombus length was based on the absence of 
contrast as seen in single- phase CTA, supported by the NCCT 
hyperdense artery sign, if present. Measurements on multiphase 
CTA might more accurately capture the true thrombus length.30

ConCLusIon
Thrombus imaging characteristics are significantly intercor-
related and some of them show moderate and strong correla-
tions. The collinearity of these thrombus characteristics should 
be considered when multiple thrombus characteristics are 
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included in future predictive modeling studies. The observed 
weak correlations reflect that there is still a large variety of 
characteristics for a given single thrombus variable: thrombus 
imaging characteristics form a continuum, which does not allow 
for grouping of typical thrombus archetypes based on these 
features. The continuous spectrum and specific variability of 
thrombus imaging characteristics should be considered when 
developing novel treatment approaches.
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