Article Text
Abstract
Background Numerous studies have evaluated the rupture risk of intracranial aneurysms using morphological parameters because of their good predictive capacity. However, the limitation of current morphological parameters is that they do not always allow evaluation of irregularities of intracranial aneurysms. The purpose of this study is to propose a new morphological parameter that can quantitatively describe irregularities of intracranial aneurysms and to evaluate its performance regarding rupture risk prediction.
Methods In a retrospective study, conventional morphological parameters (aspect ratio, bottleneck ratio, height-to-width ratio, volume to ostium ratio, and size ratio) and a newly proposed morphological parameter (mass moment of inertia) were calculated for 125 intracranial aneurysms (80 unruptured and 45 ruptured aneurysms). Additionally, hemodynamic parameters (wall shear stress and strain) were calculated using computational fluid dynamics and fluid–structure interaction. Artificial neural networks trained with each parameter were used for rupture risk prediction.
Results All components of the mass moment of inertia (Ixx, Iyy, and Izz) were significantly higher in ruptured cases than in unruptured cases (p values for Ixx, Iyy, and Izz were 0.032, 0.047, and 0.039, respectively). When the conventional morphological and hemodynamic parameters as well as the mass moment of inertia were considered together, the highest performance for rupture risk prediction was obtained (sensitivity 96.3%; specificity 85.7%; area under the receiver operating characteristic curve 0.921).
Conclusions The mass moment of inertia would be a useful parameter for evaluating aneurysm irregularity and hence its risk of rupture. The new approach described here may help clinicians to predict the risk of aneurysm rupture more effectively.
- Aneurysm
Data availability statement
No data are available.
Statistics from Altmetric.com
Data availability statement
No data are available.
Footnotes
HY and K-CC are joint first authors.
Contributors HDY and KC-C contributed equally to this work as co-first authors. JHO and YBK contributed equally to this work as co-corresponding authors. JJK, HDY, and KC-C gathered the data and collaboratively drafted the manuscript. JHO and YBK conceptualized the study and supervised the work within their respective specialties. All authors approved the final version of the manuscript. JHO and YBK are guarantors of this work.
Funding This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. 2020R1A2C1011918) It was also supported by the NRF grant funded by the Korea government (MSIT). (No. 2021R1F1A1049435)
Competing interests None declared.
Provenance and peer review Not commissioned; externally peer reviewed.
Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.