Article Text

other Versions

Download PDFPDF
Original research
Monitored anesthesia care during mechanical thrombectomy for stroke: need for data-driven and individualized decisions
  1. Raul G Nogueira1,
  2. Mahmoud H Mohammaden1,
  3. Timothy P Moran2,
  4. Matthew K Whalin3,
  5. Raphael Y Gershon3,
  6. Alhamza R R Al-Bayati1,
  7. Jonathan Ratcliff2,
  8. Leonardo Pisani1,
  9. Bernardo Liberato1,
  10. Nirav Bhatt1,
  11. Michael R Frankel1,
  12. Diogo C Haussen1
  1. 1Department of Neurology, Emory University School of Medicine, Marcus Stroke & Neuroscience Center, Grady Memorial Hospital, Atlanta, Georgia, USA
  2. 2Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
  3. 3Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, USA
  1. Correspondence to Dr Raul G Nogueira, Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; raul.g.nogueira{at}


Background The optimal anesthesia management for patients with stroke undergoing mechanical thrombectomy (MT) during the COVID-19 pandemic has become a matter of controversy. Some recent guidelines have favored general anesthesia (GA) in patients perceived as high risk for intraprocedural conversion from sedation to GA, including those with dominant hemispheric occlusions/aphasia or baseline National Institutes of Health Stroke Scale (NIHSS) score >15. We aim to identify the rate and predictors of conversion to GA during MT in a high-volume center where monitored anesthesia care (MAC) is the default modality.

Methods A retrospective review of a prospectively maintained MT database from January 2013 to July 2020 was undertaken. Analyses were conducted to identify the predictors of intraprocedural conversion to GA. In addition, we analyzed the GA conversion rates in subgroups of interest.

Results Among 1919 MT patients, 1681 (87.6%) started treatment under MAC (median age 65 years (IQR 55–76); baseline NIHSS 16 (IQR 11–21); 48.4% women). Of the 1677 eligible patients, 26 (1.6%) converted to GA including 1.4% (22/1615) with anterior and 6.5% (4/62) with posterior circulation strokes. The only predictor of GA conversion was posterior circulation stroke (OR 4.99, 95% CI 1.67 to 14.96, P=0.004). The conversion rates were numerically higher in right than in left hemispheric occlusions (1.6% vs 1.2%; OR 1.37, 95% CI 0.59 to 3.19, P=0.47) and in milder than in more severe strokes (NIHSS ≤15 vs >15: 2% vs 1.2%; OR 0.62, 95% CI 0.28 to 1.36, P=0.23).

Conclusions Our study showed that the overall rate of conversion from MAC to GA during MT was low (1.6%) and, while higher in posterior circulation strokes, it was not predicted by either hemispheric dominance or stroke severity. Caution should be given before changing clinical practice during moments of crisis.

  • stroke
  • thrombectomy

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.


  • Twitter @pisanileonardo, @nirav_r_bhatt

  • RGN and MHM contributed equally.

  • Contributors RGN: Study conception, design of the work, interpretation of data, drafting of the manuscript. MHM: Acquisition of data, interpretation of data, drafting of the manuscript. TPM: statistical analysis. MKW, RYG, ARA, JR, LP, BL, NB, MRF, DCH: Critical revision of the manuscript. All authors gave final approval of the version to be published and are in agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests RGN reports consulting fees for advisory roles with Stryker Neurovascular, Cerenovus, Medtronic, Phenox, Anaconda, Genentech, Biogen, Prolong Pharmaceuticals, Imperative Care and stock options for advisory roles with Brainomix, Viz-AI, Corindus Vascular Robotics, Vesalio, Ceretrieve, Astrocyte and Cerebrotech. DCH is a consultant for Stryker and Vesalio and holds stock options at Viz.AI.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; externally peer reviewed.

  • Data availability statement Data are available upon reasonable request. Data Sharing: The unpublished data from this dataset is held by Grady Memorial Hospital / Emory University and the corresponding author. Requests for data sharing would be required to be discussed with them directly.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.