Society of NeuroInterventional Surgery recommendations for the care of emergent neurointerventional patients in the setting of COVID-19

Justin F Fraser,1,11 Adam S Arthur,1,2,3 Michael Chen,4 Michael Levitt,5 J Mocco,6 Felipe C Albuquerque,7 Sameer A Ansari,8 Guilherme Dabus,9 Mahesh V Jayaraman,10 William J Mack,11 James Milburn,12 Maxim Mokin,9,13 Sandra Narayan,14 Ajit S Puri,15 Adnan H Siddiqui,16,17 Jenny P Tsai,18 Richard P Klucznik19

INTRODUCTION

The global pandemic of coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents an unprecedented challenge to our healthcare system.1 As the number of identified COVID-19 patients exponentially increases, protocols for the safe delivery of care of both patients and providers are vital. This is especially true, given the number of healthcare providers who have contracted the disease. If we fail to protect physicians, nursing staff, and ancillary providers, we will fail to meet the needs of future patients. The successful care of future COVID-19 patients will depend on effective safety and prevention strategies for healthcare workers.2,2

Patients with acute ischemic stroke (AIS) are a high-risk patient cohort. Li et al performed an analysis of six studies encompassing 1527 patients with COVID-19 and showed that patients with cardio/cerebrovascular disease comprised 16.4% of the cohort, but that the incidence was approximately threefold higher among patients with severe COVID-19 requiring intensive care (ICU) admission.2 Thus, patients with a history of AIS and/or its risk factors are particularly at risk for the severe form of COVID-19. Additionally, there is early evidence that SARS-CoV-2 can cause neurologic signs, and that it has been reported in the brains of both patients and animal models.4 Of patients with SARS-CoV-2 respiratory distress, 36.4% had neurologic symptoms with 4.5% of severe patients suffering ischemic stroke.5 In this setting, neurointerventionalists should expect to be involved in the care of COVID-19-positive patients, as well as those whose status is unknown and those at risk of a severe form of the disease.

While the data on COVID-19 are rapidly emerging, the Society of NeuroInterventional Surgery seeks to provide neurointerventionalists with rapid up-to-date recommendations on the management of stroke thrombectomy in this setting with an emphasis on safety measures for healthcare providers.

CRITERIA FOR MECHANICAL THROMBECTOMY

The presence of COVID-19 as a public health issue should not alter the inclusion and exclusion criteria for mechanical thrombectomy (MT). We recommend that providers use currently available guidelines and recommendations based on multiple randomized trials for identification and management of large vessel occlusion whenever possible.6-8 Because of the significant proven benefit of thrombectomy for patients with emergent large vessel occlusion, denial of this treatment likely creates a greater drain on healthcare resources.

DOCUMENTED COVID-NEGATIVE STATUS

While it is relatively unlikely that most patients requiring MT will have a documented negative COVID-19 test, such a result within 48 hours prior to thrombectomy would indicate a ‘COVID-negative’ patient. In such cases, we recommend taking standard personal protective equipment (PPE) precautions (surgical cap, eye protection, gown/gloves, shoe covers, and proper donning/doffing hygiene) set out by a provider’s institution. False negative patients have been reported and, in regions of peak epidemic activity, protecting the healthcare team will need to be balanced with preserving PPE resources.

DOCUMENTED COVID-POSITIVE STATUS

Patients with COVID-positive documentation (or those presumed positive; see below) should be treated with maximum safety precautions. Intubation, extubation, suction, and active CPR may result in aerosolization of respiratory secretions, increasing the risk of exposure to personnel. Intubated patients pose less of a transmission risk to neurointerventional staff given that their ventilation is managed through a closed circuit. Nonetheless, disruption of the circuit (such as for a cuff leak, suctioning, endotracheal tube manipulation) can release additional aerosolized secretions. Therefore, we recommend standard institutional protocols with a low threshold for intubation of stroke thrombectomy COVID-19-positive patients prior to transport to the angiography suite, ideally in a negative pressure environment. For instance, patients with dominant hemisphere occlusions, very high National Institutes of Health Stroke Scale score or a low Glasgow Coma Scale score, or posterior circulation occlusions (as well as any patient with significant symptomatic

For numbered affiliations see end of article.

Correspondence to
Dr Justin F Fraser, Neurological Surgery, University of Kentucky, Lexington, KY 40506, USA; JFr235@uky.edu

Received 31 March 2020
Accepted 2 April 2020
Published Online First
15 April 2020
respiratory difficulty) should be considered for prophylactic intubation as the risk of intraprocedural intubation is high.\(^9\)

Once an intubated patient is transported into the suite, all providers should wear enhanced PPE at all times provided resources are available. This includes surgical cap, eye protection (goggles and face shield, not just glass), full gown/gloves, shoe covers, and an N95 mask or Powered Air Purifying Respirator (PAPR). It is recommended that treating physicians and interventional radiology technicians working in the case wear boot-type shoe covers if available to minimize contamination. Ideally, providers should use new N95 masks or PAPR for each encounter with a COVID-positive patient. To preserve N95 masks (given the recognized shortage), it is reasonable to wear a standard surgical mask over the N95 mask for potential preservation, and to minimize the number of staff participating in the procedure. Providers should follow their institutional guidelines regarding use/re-use of N95 masks, given resource limitations. Patients should not be extubated in the angiography suite (unless in a negative airflow environment), but should be taken to an isolation ICU room for planned extubation with airborne and contact precautions.

UNDocumented COVID Status
Screening for fever and respiratory symptoms should be part of the screening of all potential neurointerventional patients. Intubation of these patients prior to transportation to the angiography suite should be considered, especially in patients with risk factors for intraprocedural intubation as noted above. Given that thrombectomy is such a time-sensitive procedure, that family members are often not available to provide a complete medical history, and that a neurologically impaired patient may not be able to answer screening questions, it is recommended that patients of unknown COVID status be treated as high risk for COVID-positive (see above), provided institutional resources are available.

Additional Post-Thrombectomy Principles in the COVID-19 Setting
Some additional strategies after thrombectomy may be considered to assist in the care of patients, reduce risk to care providers, and maximize care of all patients in a setting of increased ICU utilization.

Early Progressive Care and Related Protocols
Once COVID status is determined and the patient is extubated (if needed), it is recommended to transfer uncomplicated post-thrombectomy patients out of the ICU as soon as possible. Subsequent stroke etiology and prevention evaluation can be performed in other inpatient locations to maximize availability of ICU beds. It is recommended that institutions develop aggressive, yet safe, protocols to recover appropriate thrombectomy patients in non-ICU settings (progressive care/step down). It may be possible that there will be no available ICU beds in regions of high COVID-19 prevalence, and having the ability to recover thrombectomy patients in a non-ICU setting will be critical.

COVID Testing
Given that stroke patients may not be able to provide a full history due to neurologic impairment, it is recommended that, should resources be available, all AIS post-thrombectomy patients undergo COVID-19 testing if available during their admission. This will allow preservation of valuable PPE and separate true COVID-19-positive populations to prevent nosocomial transmission. However, given the limited availability of COVID-19 testing, state and local public health guidance may vary regarding who to test, and when.

Angiography Equipment and Turnover
Since a majority of patients who undergo MT will be COVID-positive or presumed positive in the current environment, effective cleaning of angiography equipment and suites will have an impact on turnover times and readiness for additional cases. For this reason, it is recommended that elective and non-urgent cerebrovascular cases be postponed until the peak of the pandemic has been reduced. It is also recommended that, for hospitals with multiple angiography suites, one suite is designated as a 'COVID room' and stocked for treatment with enhanced PPE and accessible interventional equipment to minimize intraprocedural staffing. The establishment of negative-pressure (rather than positive-pressure) ventilation in angiography suites is worth consideration.

Staffing Organization and PPE Use
Shift-based allocation of staff and physicians to separate individuals with overlapping skillsets is recommended. All neuromitventional personnel should be fit-tested for N95 masks, and be well versed in the proper techniques for doffing and donning PPE, including eye protection.

Author Affiliations
1 Neurological Surgery, University of Kentucky, Lexington, Kentucky, USA
2 Semmes-Murphy Neurologic and Spine Institute, Memphis, Tennessee, USA
3 Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
4 Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
5 Departments of Neurological Surgery, Radiology, Mechanical Engineering, and Stroke & Applied Neuroscience Center, University of Washington School of Medicine, Seattle, Washington, USA
6 Neurosurgery, The Mount Sinai Health System, New York, New York, USA
7 Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
8 Departments of Radiology, Neurology, and Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
9 Interventional Neuroradiology and Neuroendovascular Surgery, Miami Cardiac & Vascular Institute and Baptist Neuroscience Center, Miami, Florida, USA
10 Diagnostic Imaging, Brown University Warren Alpert Medical School, Providence, Rhode Island, USA
11 Neurosurgery, University of Southern California, Los Angeles, California, USA
12 Radiology, Ochsner Medical System, New Orleans, Louisiana, USA
13 Neurosurgery, University of South Florida, Tampa, Florida, USA
14 Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
15 Radiology and Neurosurgery, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
16 Neurosurgery and Radiology and Canon Stroke and Vascular Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
17 Neurosurgery, Gates Vascular Institute at Kaleida Health, Buffalo, New York, USA
18 Neurology, Spectrum Health, Grand Rapids, Michigan, USA
19 Radiology, Houston Methodist Hospital, Houston, Texas, USA
20 Twitter Adam S Arthur @AdamArthurMD, Michael Chen @dr_mchen and James Milburn @docroc99

Contributors
This was a collaborative statement from the SNIS Board of Directors. The primary author, JF, constructed the manuscript text, but solicited input from all other contributors equally, and modified the document using consensus to ensure agreement. All authors reviewed the document and provided relevant and vital feedback for modification.

Funding
The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Disclaimer
These recommendations for the treatment of neurointerventional patients during the COVID-19 pandemic are provided for informational and educational purposes only. Adherence to these recommendations will not ensure...
successful treatment in every situation. Furthermore, these recommendations should not be interpreted as setting a standard of care, or be deemed inclusive of all proper methods of care nor exclusive of other methods of care reasonably directed to obtaining the same results. The ultimate judgment regarding the propriety of any specific therapy must be made by the physician and the patient in light of all the circumstances presented by the individual patient, and the known variability and biological behavior of the medical condition. These recommendations reflect the best available information at this time. The results of future studies may require revisions to these recommendations and assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of these recommendations or for any errors or omissions.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

Data availability statement There are no data in this work.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID iDs
Justin F Fraser http://orcid.org/0000-0002-5980-3989
Adam S Arthur http://orcid.org/0000-0002-1536-1613
Maxim Mokin http://orcid.org/0000-0003-4270-8667
Adnan H Siddiqui http://orcid.org/0000-0002-9519-0059

REFERENCES