artery occlusion due to prior angiogram (n=1). A 5 Fr sheath was used for diagnostic procedures while 6 Fr was used for neurointerventions. A TR band was used for closure. No case required conversion to femoral access. No access related complication was noticed.

Conclusion Transulnar arterial access is safe and feasible for diagnostic and interventional neuroangiography procedures and provides a useful alternative to transradial access, potentially avoiding complications associated with transfemoral access.

Abstract E-135 ENDOVASCULAR MANAGEMENT OF EPISTAXIS: TIME FOR CONSENSUS? A SYSTEMATIC REVIEW AND META-ANALYSIS

Neurosurgery, Massachusetts General Hospital, BOSTON, MA

Background Recently, the American Academy of Otolaryngology-Head and Neck Surgery Foundation (AAO-HNSF) published evidence-based recommendations to improve the quality and management variation for patients who suffer from epistaxis, however, there were no clear guidelines on timing and techniques of endovascular management.

Methods A systematic review and meta-analysis in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Our primary outcome was the proportion of patients who had immediate bleeding control after endovascular management. Secondary outcomes included percentage of major adverse events following embolization. Sensitivity analysis was conducted according to center protocol (materials used, unilateral vs. bilateral approach, and timing of treatment).

Results Fourteen case series (with 719 patients) met our inclusion criteria for primary and secondary outcome. The pooled event rate for immediate control was 86% (95% confidence interval [CI], 82%-89%). Major adverse events (stroke, craniofacial skin necrosis, and retro-peritoneal hemorrhage) had an overall event rate of 2.4% (95% CI 1.4%-4%). Most embolizations were targeting distal portion of the internal maxillary (>95% of cases). Sensitivity analysis revealed that bilateral approaches were associated with less recurrence rates, however, higher rates of major adverse events were noted. Several factors were identified for heterogeneity between studies, including outcomes definitions, follow-up time, angiographic protocol, target vessels and embolization’s materials.

Conclusions The best available evidence for endovascular management of epistaxis is based on retrospective observational studies. Deficiency of standardized reporting methods is a significant drawback to understand the exact role of endovascular treatment for epistaxis and whether it is superior to other operative methods.

Abstract E-136 SAFETY AND EFFICACY OF AN ACCELERATED DEFLATION ALGORITHM FOR PATENT HEMOSTASIS IN TRANSRADIAL NEUROVASCULAR PROCEDURES

1K Mantripragada*, 1S Mansour, 1N Echeverry, 1E Hospedales, 1S Shapiro, 2B Snelling.
1Charles E. Schmidt College of Medicine at Florida Atlantic University, Boca Raton, FL; 2Cerebrovascular and Endovascular Neurosurgery, Marcus Neurosciences Institute, Boca Raton, FL

Introduction/Purpose Transradial access for neurovascular procedures has gained prominence recently given improved safety
benefits, reduced healthcare costs, and patient preference. The addition of a potassium ferrate patch (StatSeal) prior to achieving access site hemostasis has been shown in other fields to reduce time to transradial band removal, and thus, recovery time. We sought to review our experience with this device in our neurovascular patient population.

Materials and Methods A retrospective single-center series review was conducted with 43 patients and 50 consecutive procedures. A transradial sheath (Terumo Glidesheath slender) was used in all procedures. Heparin 5000 units was administered as an IV bolus in all patients. Re-administration of IV heparin during procedure to maintain ACT >250 was dependent on the case. Patient hemostasis was achieved with transradial band (TR band (Terumo) for proximal radial; (Merit) PreludeSYNC Distal for ‘distal’ radial access) following application of StatSeal. The band was inflated to 8cc air. Half of the air was removed after 15 minutes, and the remaining air was removed after 30 minutes. The access site was monitored for another 30 minutes. We sought to review our experience with this device in our neurovascular patient population.

Methods All patients with an endovascular intervention from 10/1/2018 to 12/31/2019 performed at a single center were retrospectively analyzed. Patients were grouped into two cohorts: those undergoing TRA and TFA access. Primary outcomes included complications and access site cross-over. Secondary outcomes analyzed were mean fluoroscopy time and contrast amount.

Results A total of 579 neurointerventional treatment procedures were performed during the 15-month study period. 163 (28%) procedures were initially attempted via a TRA and the remaining 416 (72%) via TFA. Of the 163 initially-attempted TRA procedures, 7 (4%) crossovers (4 aneurysm embolizations, 2 thrombectomies for acute stroke, and 1 AVM embolization with 6 crossing over to TFA) vs 13 (3.1%) (5 crossing over to TRA) in the TFA procedures occurred (p=0.49). Of the 162 TRA neurointerventional procedures that were carried out accounting for crossovers, 80 (35%) were for aneurysmal embolization, 2 thrombectomies (19%) of an AVM and/or AVF, 4 (3%) thrombectomies of an acute stroke, 9 (6%) carotid artery stenting/gioplasty, 8 (5%) embolization of a tumor, 24 (15%) middle meningeal artery embolization for chronic subdural hematomas, and 6 (4%) other neurointerventions. The TRA procedures were significantly different than the 417 TFA procedures performed, which included 143 (34%) thrombectomies for acute stroke (p<0.001). A significantly greater fluoroscopy time (39 vs 30 minutes) and total contrast (156 vs 128 mL) were observed in the TRA procedures (p<0.001 for both). TFA procedures (N=43, 10%) were associated with a significantly higher complication rate than TRA procedures (N=5, 4%) (p=0.008); however, the majority of complications were mild with only 18 (3%) major complications including 3 (2%), all IPH or CVA in the TRA procedures and 15 (3.6%; 6 IPH/ CVA, 5 vessels dissections, 3 femoral occlusions, and 1 retroperitoneal bleed) in the TFA interventions. After eliminating thrombectomy patients and performing a propensity adjustment (including age, gender, symptoms, procedure, pathology, sheath and catheter size) TRA catheterization was associated with decreased odds of a complication (OR 0.25, 95% CI: 0.085–0.72, p=0.011) and a greater contrast amount (161 vs 140 mL, p=0.007), but no significant difference in fluoroscopy time (39 vs 35 minutes, p=0.052) than TFA treatments.

Conclusion TRA access for neuroendovascular interventions can be performed successfully for a variety of procedures and for numerous pathologies, with fewer overall complications and no difference in fluoroscopy times than the traditional TFA approach.

E-137 PROPENSITY ADJUSTED COMPARATIVE ANALYSIS OF RADIAL AND FEMORAL ACCESS FOR NEUROINTERVENTIONAL TREATMENTS

10.1136/neurintsurg-2020-SNIS.169