Endovascular thrombectomy is routinely performed in patients undergoing a large vessel occlusion. This process not only allows for the removal of a blood clot but also for the selective delivery of potential therapeutics directly to the site of injury. The intra-arterial (IA) route of drug administration in the mouse was developed to bridge the gap between animal stroke treatments and clinical stroke therapy. We have previously shown this delivery method targets the site of injury while blunting systemic effects that have proven problematic with intraperitoneal routes. Here, we adapted the IA method for use in rats, combining it with a clinically relevant large vessel occlusion stroke model (MCAO). Our goal was to characterize variances in the model in order to optimize potential therapeutic delivery methods to the ipsilaterally affected hemisphere. Male and female Sprague-Dawley rats (4 months of age) were subjected to placement of micro-angiography tubing at the bifurcation of the common carotid artery (CCA), with delivery through the internal carotid artery (ICA). We then determined the optimal infusion rate and volume using injection of India ink and evaluation of vascular distribution within the brain and the liver. Importantly, we found the infusion rate and volume varied depending on sex and body weight. India ink was selectively delivered to the ipsilateral side of the brain in males (370–460 g) at 4 µl/min with a max volume of 25 µl and in females (250–300 g) at 2.5 µl/min with a max volume of 25 µl. Following these guidelines, no ink was observed in the liver of these animals, indicating reduced systemic circulation of administered compounds. We then performed a 5-hour transient MCAO, on male and female Sprague-Dawley rats (4 months of age), to mimic human stroke, since 5 hours is the average time from the clinical presentation of stroke to the thrombectomy procedure. A silicone coated monofilament was advanced until resistance was felt, occluding the MCA territory. At the 5 hour time point, we removed the monofilament and inserted the microangiography tubing at the same entry point on the bifurcation of the CCA. We performed variant injections using different volumes and rates, measuring delivery of dye (India Ink) and rate of induced subarachnoid hemorrhage. A rate of 4 µl/min with a max volume of 25 µl was optimal in males, and a rate of 2.5 µl/min with a max volume of 25 µl was optimal in females. The results showed that, even with a large vessel occlusion, and removal of the monofilament (recanalization), the IA injection using these sex-specific rates and volumes resulted in appropriate limited dye delivery without ruptured subarachnoid hemorrhage. This IA method is ideally suited for combination with the MCAO stroke model and mirrors the human patient undergoing an endovascular thrombectomy. This model provides an investigational opportunity to test neuroprotective drugs and other pharmacotherapies.
Conclusions
A novel 8Fr aspiration catheter demonstrates superiority over 6Fr aspiration catheters for each clot phenotype at the most common sites of occlusion in an in-vitro model.

Disclosures
S. Fitzgerald: 1; C; Perfuze Ltd.
D. Ryan: None.
L. Mullins: 4; C; Perfuze Ltd. 5; C; Perfuze Ltd.
J. Thornton: 2; C; Perfuze Ltd. 4; C; Perfuze Ltd.
R. Nogueira: 2; C; Perfuze Ltd. 4; C; Perfuze Ltd.

E-019

COMPARISON OF RABBIT MODELS OF INTRACRANIALATHEROSCLEROTIC DISEASE

1M Zabriskie, 2C Wang, 3M Alexander*. 1Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT; 2Radiology, China, Shenyang, CHINA; 3Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT

10.1136/neurintsurg-2020-SNIS.55

Introduction/Purpose
Intracranial atherosclerotic disease (ICAD) is a leading cause of ischemic stroke. Treatment controversies exist due to limited understanding of its pathophysiologic drivers. This results from a paucity of histopathological data from human lesions. Development of an animal model would allow for preclinical studies. This study seeks to characterize development of ICAD in Watanabe heritable hyperlipidemic (WHHL) and homozygous apolipoprotein E-knockout (ApoE) rabbits.

Materials and Methods
Mature WHHL rabbits, mature ApoE rabbits fed a high cholesterol diet for up to six months, and juvenile wild-type New Zealand White (NZW) rabbits serving as normal controls underwent the same euthanasia protocol using perfusion fixation, with perfusate delivered through a vascular sheath inserted into a carotid artery. Animals were decapitated and the brain and intracranial arteries harvested and placed in a container with formalin. After two weeks, specimens were sliced to maximize cross-sectional orientation of the proximal intracranial arteries. Light microscopic analysis was performed by a specialized veterinary pathologist after hematoxylin and eosin staining to assess presence of ICAD. Basilar and internal carotid artery segments were each rated as having no, mild, moderate, or advanced ICAD. Two-tailed t-tests were performed to compare disease prevalence among rabbit types.

Results
17 rabbits underwent evaluation, including 5 WHHL (24.3–31.6 months at euthanasia, mean 27.4 ± 2.8), 4 ApoE (37.8–46.8 months, mean 42.8 ± 4.2), and 8 NZW rabbits (6.1–20.9 months, mean 11.1 ± 5.2). In WHHL animals, 5 (33.3%) vessel segments had ICAD on pathology (2 mild, 2

Abstract E-018 Figure 1
Comparison of the First and Second Pass Reperfusion Success Rates of the novel 8Fr Millipede 088 Catheter versus the Standard 6Fr Catheters in (A) M1+Bifurcation and (B) ICA-Terminus Occlusions. N=5 Replicates in all tests.