There was no difference between clot HU density on NCCT among these 3 groups (48.8 ±8.5, 50.1 ±7.2, and 51.0 ±8.4, P=0.56). In the stent retriever first group, there was no difference in perviousness or HU density of clot in patients with TICI 2c/3, TICI 2b or TICI 0–2a after first pass (perviousness 21.6 ±17.0, 22.4 ±18.04 and 22.6 ±22.9, P=0.97; HU on NCCT 48.7 ±9.1, 49.7 ±6.5 and 46.7 ±9.0, P=0.47). In multivariate analysis using a model that included use of intravenous tPA, balloon guide catheter use, on-set to groin puncture and age, perviousness of more than 10 was the only independent factor predictive of successful recanalization (defined as TICI 2b-3) after first pass in the aspiration first group with odds ratio of 3.4 (95% CI 1.0 -12.0). We did not find any significant predictors of successful reperfusion (TICI 2b-3) after first pass in the stent retriever first group.

Conclusions Clot perviousness values are associated with first pass angiographic success in patients treated with the aspiration first approach for thrombectomy. Additional research is needed to determine if clot perviousness may be used to identify patients who are more likely to have successful recanalization with aspiration when deciding between aspiration versus stent retriever first approaches.

Disclosures M. Mokin: 1; C; NIH R21NS109575. 2; C; Medtronic, Canon medical, Cerenovus. 4; C; Stryker, Synchro, VICIS, Endostream. M. Waqas: None. J. Fifi: 1; C; Stryker, Penumbra, Microvention. 4; C; Cerebrotech, The Stroke Project. R. De Leacy: 1; C; Penumbra. 6; C; Penumbra, Siemens. D. Fiorella: 1; C; Penumbra, Cerebrotech, Stryker. 6; C; Genentech, Shape Memory Medical. E. Gu: None. E. Levy: 6; C; Penumbra, NextGen Biologics, Rapid Medical, Cognition Medical, Three Rivers Medical, Stryker, MedX, Endostream Medical. K. Snyder: 6; C; Penumbra, Canon Medical Systems, Medtronic, Jacobs Institute; and other from Neurovascular Diagnostics. R. Hanel: 6; C; Penumbra, Endostream, Cerebrotech, Synchro, InNeuroCo, Medtronic, Microvention, Stryker, Cerenovus, Elum, Three Rivers. A. Aghabrahim: None. K. Woodward: 6; C; Penumbra. H. Hixson: 6; C; Penumbra. M. Chaudry: 6; C; Penumbra, Pulsar Vascular, Medtronic, Microvention, Codman, Blockade. A. SpioTTa: 6; C; Penumbra, Pulsar Vascular, Stryker, Microvention. A. Rai: 6; C; Penumbra, Microvention, Stryker. D. Frei: 6; C; Penumbra, Cerebrotech, Stryker, Genentech, Shape Memory Medical, Siemens. J. Delgado Almandoz: 6; C; Penumbra, Medtronic. M. Kelly: 6; C; Penumbra, Medtronic, Endostream. A. Arthur: 6; C; Penumbra. B. Baxter: 6; C; Penumbra, Medtronic, Stryker, Viz, and 880 Medical. J. English: 6; C; Penumbra, Medtronic, Stryker, Route 92 Medical. I. Linfante: 6; C; Penumbra, Medtronic, Stryker, Microvention, InNeuroCo, and Three Rivers. K. Fargen: 6; C; Penumbra and Cerebrotech. A. Turk III: 6; C; Penumbra, Pulsar Vascular, Codman, Microvention, Medtronic, Blockade. A. Siddiqui: 6; C; Amnis Therapeutics, Serenity Medical, Silk Road Medical, Rebound Therapeutics, Penumbral Medtronic, Three Rivers Medical, Microvention, Imperative Care, Cerenovus, Endostream Medical, StimMed, Claret M. J. Mocco: 6; C; Penumbra, Cerebrotech, Rebound Therapeutics, TSP, Lazarus Effect, Medina, Pulsar Vascular, Blockade.

E-058 SAFETY AND OUTCOMES OF INTRA-ARTERIAL TISSUE PLASMINOGEN ACTIVATOR AS AN ADJUNCTIVE TECHNIQUE FOR DISTAL EMBOLIZATION – INSIGHTS FROM STAR

Introduction Early studies have shown that using intra-arterial thrombolysis is effective in achieving recanalization in patients with acute ischemic stroke. However, the using intraarterial thrombolysis was associated with a high rate of symptomatic hemorrhagic transformation (sICH). In current practice time, intra-arterial thrombolysis using tissue plasminogen activator (IA-tPA) can be used as an adjunctive technique in the setting of persistent distal occlusion during mechanical thrombectomy (MT).

Methods We used data from the Stroke Thrombectomy and Aneurysm Registry (STAR), which included the prospectively maintained databases from 28 thrombectomy-capable stroke centers in the US, Europe, and Asia. We included only consecutive patients who received MT using second generation thrombectomy devices. Then, we identified patients who received 5–10 mg of IA-tPA injected directly to the target vessel because of persistent distal occlusion during MT. We collected the baseline characteristics, procedural metrics, rate of sICH, and long-term functional outcomes. We estimated a Generalized Linear Model (GLM) with logit link to assess predictors of sICH, successful recanalization (Thrombolysis in Cerebral Infarction score ≥2b), and favorable 90-day functional outcomes (modified Rankin scale 0–2 at 90-day).

Results A total of 154 patients received IA-tPA out of 1608 thrombectomy patients who were included in this analysis. Median age was 68 (IQR 57–76) years; 79 (51.3%) were females; 97 (63%) were white. There was no difference in stroke severity measured by the National Institute of Health stroke scale (NIHSS) (17 vs. 15, P=0.079) or Alberta Stroke Program Early CT (ASPECT) score (9 vs. 9, P=0.16) between patients in the IA-tPA group compared to the non-IA-tPA group, respectively. In addition, no difference was noted in the prevalence of stroke risk factors (hypertension, diabetes, atrial fibrillation, prior stroke) between both groups.

IA-tPA group had less patients who have received IV-tPA (33.8% vs. 54.9%, P<0.001) and longer onset-to-groin time (281 vs. 249 min, P=0.003) (table 1). Patients in the IA-tPA group achieved similar rates of successful recanalization (73.4% vs. 74.6%, P=0.736) and favorable functional outcomes (40.9% vs. 40.8%, P=0.976). On multivariate analysis, using IA-tPA was not independently associated with sICH (RR 0.761, 95% CI 0.323–1.798, P=0.535), successful recanalization (OR 0.888, 95% CI 0.589–1.339, P=0.572), or favorable functional outcomes (OR 1.065, 95% CI 0.72–1.575, P=0.752).
Conclusion The use of IA-tPA as an adjunctive treatment to mechanical thrombectomy due to persistent distal occlusion did not result in a higher rate of successful recanalization, 90-day functional independence, or sICH.

Disclosures E. Almallouhi: None. S. Al kasab: None. A. Alawi: None. M. Psychogios: None. A. Arthur: 1; C; Microvention, Penumbra, and Siemens; 2; C; Balt, Johnson and Johnson, Leica, Medtronic, Microvention, Penumbra, Scientia, Siemens, and Stryker. 4; C; Bendit, Cerebrotech, Endostream, Magneto, Marblehead, Neurogami, Serenity, Synchron, Triad Medical and Vascular Simulations. J. Kim: None. R. De Leacy: 2; C; Cerevaskus, Imperative Care and Siemens. A. Rai: None. S. Keyrouz: None. K. Fargen: None. T. Dumont: None. P. Kan: None. R. Starke: 2; C; Penumbra, Abbott, Medtronic,

InNeuroCo and Cerenovus. A. Spiotta: 1; C; Penumbra. 2; C; Penumbra, Stryker, Cerenovus, Terumo.

E-059 VERSATILE CEREBROVASCULAR PLATFORM FOR EVALUATION AND DEVELOPMENT OF THROMBECTOMY TECHNOLOGIES

Introduction Cerebrovascular test beds for large vessel occlusion (LVO) stroke are widely used to evaluate and develop