Results There were 238 patients who met inclusion criteria. Mean age was 69.7 years and the majority of patients were male (69.7%). Most patients had one or two major comorbidities (52.9%), and 21.4% had more than two major comorbidities. 62.2% underwent CAS for symptomatic carotid stenosis. Fourteen patients (5.9%) experienced new or recurrent ipsilateral ischemia during follow-up, with eight (3.4%) experiencing a stroke with permanent neurologic deficit. 59 patients (24.8%) died during follow-up with a median time to death of 111.3 months (95% CI: 95.1 – 133.6) on Kaplan-Meier analysis. Increasing age at time of CAS (Unit Risk ratio (1.06, 95% CI 1.02–1.10, p=0.005) and more than two major comorbidities (RR 3.82, 95% CI 1.28–11.49, p=0.02) were independent risk factors for mortality during follow-up.

Conclusion Unlike population-based studies, our results indicate acceptable long-term survival rates after CAS in adequately selected patients.

Disclosures L. Rinaldo: None. A. Bhargav: None. C. Arnold Fiebelkorn: None. G. Lanzino: None.

E-117 SAFETY AND EFFICACY OF ACUTE EMERGENT CAROTID STENTING TREATMENT FOR SYMPTOMATIC CAROTID STENOSIS


Introduction Carotid endarterectomy and carotid stenting (CAS) have shown comparable outcomes in symptomatic patients. However, the optimal timing of CAS is debatable. We aim to evaluate the safety and efficacy of CAS when performed emergently during hospitalization of symptoms onset as compared to an elective procedure in a subsequent admission.

Methods We performed a retrospective analysis of CAS patients admitted to our comprehensive stroke center and included all the patients with TIA/stroke and ipsilateral extracranial carotid stenosis >50% from January 2015 to September 2019. Medical records were reviewed for demographics, clinical data and outcomes. The primary outcome was defined as any stroke, myocardial infarction or death related to the procedure at 3 months of follow-up. Secondary outcomes were minor neurological (seizures or TIA at discharge) and non-neurological (bradycardia, hypotension, groin ecchymosis and/or hematoma, retroperitoneal hematoma, pneumonia, and atrial fibrillation at discharge) complications at discharge, and rate of restenosis or occlusion at follow-up (defined as a Peak Systolic Velocity by duplex ultrasonography greater than 300 cm/s or stenosis greater than 70% by angiography). Stepwise backward multivariable regression and Time-to-event analyses were used for comparisons.

Results We identified 75 emergent and 104 elective patients. Emergent differed significantly from elective patients in the rates of dyslipidemia (44% vs. 66%, p=0.003), length of hospitalization (4.9% vs. 1.2%, p=0.002), ipsilateral carotid occlusion (17% vs. 2%, p<0.001), general anesthesia (19% vs. 4%, p=0.001) and treatment with Tirofiban during procedure (13% vs. 4%, p=0.008). There was no significant difference in primary outcome (9.3% vs. 3.8%, p=0.21), minor neurological (3% vs. 0.9%, p=0.572) or non-neurological (15% vs. 11%, p=0.411) complication rates. CAS is not associated with the primary outcome (OR: 3.29, CI: 0.83 – 16.2, p=0.18) after adjusting for ipsilateral carotid occlusion. Treatment with Tirofiban during procedure was associated with all minor complications (OR: 2.88, CI: 1.53 – 5.43, p<0.001) after adjusting for male sex and age >75 years. Of all the 23 minor complications, 8 (34.7%) were due to groin and retroperitoneal hematoma. The Kaplan-Meier estimate for the frequency of restenosis or occlusion was 7% for emergency CAS group and 11.6% for elective CAS group with a mean follow-up of 12.8 months (log rank p=0.3).

Conclusions CAS in emergency symptomatic patients has comparable safety outcomes to elective patients at 3 months follow-up. Similarly, both groups have similar rates of restenosis at long-term follow-up (12.8 months).


E-118 OUTCOMES AFTER ELECTIVE CAROTID ARTERY STENTING: A SINGLE-CENTER REAL-WORLD EXPERIENCE

1A Forrest*, 1C Sellens, 2P Ramakrishnan, 2V Leesch, 2F Sanderson. 1Department of Medical Education, Riverside Regional Medical Center, Newport News, VA; 2Neurovascular Specialists, Riverside Regional Medical Center, Newport News, VA

Introduction The most current randomized clinical trial comparing carotid artery stenting (CAS) to carotid endarterectomy for short-term and long-term prevention of strokes demonstrated comparable results. In our study, we present a retrospective review of a real-world single-center experience in the treatment of elective CAS, with a focus on peri-procedural and long-term outcomes and a comparison of outcomes with those reported by CREST for CAS.

Materials and Methods All elective CAS cases from January 2015 to December 2019 were retrospectively reviewed. Cases were performed by three experienced neuro-interventionists. Data regarding patient characteristics, intra-procedural findings, and post-procedural events were extracted from the medical record. The primary endpoint was defined as peri-procedural (<30 days) stroke, myocardial infarction, or death and post-procedural ipsilateral stroke.

Results Seventy-three patients who underwent elective CAS were identified (median age 71, 59% male, 78% Caucasian). Major comorbidities included hypertension (88%), dyslipidemia (82%), and diabetes mellitus (40%). Eighty-one percent of the patients were former or current smokers. Left-sided disease was treated in 39 patients (53.4%), with a median stenosis of 75% (IQR 70–88.8%), and 89.0% of cases were asymptomatic. Asymptomatic stenting was most commonly performed due to concern for artery-to-artery embolism in patients with a prior history of artery-to-artery stroke of the contralateral side. Contralateral disease was present in 41.1%, with median stenosis of 50%. Angioplasty was used prior to stenting in 97.3% of patients and embolic protection devices in 93.2%, with a 100% procedural technical success rate. Pre-procedural and post-procedural dual antiplatelet (DAPT) prescribing rates were 100%. Aspirin platelet inhibition was therapeutic in 69.8% of cases and clopidogrel inhibition in 87.7% of cases.
Median follow up time was 17.4 months (IQR 6.8–29.5 months). No peri-procedural (<30 days) stroke, MI, or death occurred in this cohort. Post-procedural stroke, including ipsilateral or contralateral anterior circulation and posterior circulation stroke, occurred in three patients (4.1%). One experienced a major ipsilateral stroke at 10 months, in the setting of interrupted anticoagulation due to spontaneous subdural hematoma. Major posterior circulation stroke occurred in two patients, one at 5 weeks and one at five years post-procedure. Repeat ipsilateral intervention occurred in three patients (4.1%), including one for acute in-stent thrombosis on the day of procedure in the setting of sub-therapeutic DAPT, despite being previously therapeutic. There were three (4.1%) patient deaths in the first year post-procedure from metabolic encephalopathy, status epilepticus, and one unknown cause. End-points of data collected from our institution are compared to data reported after CAS in the CREST trial (Table 1).

Conclusion Elective carotid artery stenting at our institution is a safe procedure, with rates of peri-procedural stroke, MI, and death lower than those reported in the CREST trial. Elective carotid artery stenting at our institution is a safe procedure, with rates of peri-procedural stroke, MI, and death lower than those reported in the CREST trial. None.


E-119 SURPASS STREAMLINE FLOW DIVERTER USE IN TREATING CERVICAL CAROTID PSEUDOANEURYSMS: A CASE SERIES

R Achey*, L Sheikh, T Patterson, G Toth, N Zobenica Moore, M Bain. Neurological Institute, Cleveland Clinic, Cleveland, OH

Materials and Methods Data pertaining to cervical pseudoaneurysms treated with SSFD were gathered retrospectively between January 2019 to now. Data included age, aneurysm type (sidewall, fusiform), size, symptoms, number of stents placed, and SSFD dimensions. Indications for stent placement included enlarging aneurysm, worsening compressive symptoms, and TIA/stroke. Complications were noted at four time points post-operatively: <24 hours, 30 days, 6 months and one year. Aneurysm occlusion degree was characterized using SMART grading (0 - arterial, coherent inflow jet to 4 - complete aneurysm occlusion) immediately post-procedure and at one-year follow-up angiogram. Six month post-procedure MRI/MRA was used for interval aneurysm occlusion assessment.

Results Three patients underwent SSFD placement for cervical carotid pseudoaneurysms. Ages ranged from 55–78. Two patients had symptomatic sidewall aneurysms measuring 1.7 × 2.1 cm and 1.8 × 1.3 cm. Both patients developed vocal hoarseness. One patient experienced vasovagal episodes while the other experienced TIAs. Another patient had an incidentally discovered fusiform aneurysm measuring 1.3 × 1.5 cm. There were no complications at any time point. One to three stents were deployed intra-operatively. Post-procedural SMART grade was 0 for two patients, and 2 for the third patient. One-year angiogram demonstrated SMART grade 3 occlusion with a minimally visualized neck remnant for one patient without parent artery stenosis. Six month MRI/MRA demonstrated total occlusion in another patient. Follow-up data was not available from the last patient as their initial intervention occurred <6 months ago. No stents migrated on follow-up imaging. The symptomatic patient had symptom resolution at one year.

Abstract E-119 Table 1 Characteristics of three patients treated with surpass for cervical carotid pseudoaneurysms

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Aneurysm Size (mm)</th>
<th>Aneurysm Type</th>
<th>Symptoms</th>
<th>SSFD size (mm)</th>
<th>No.Devices</th>
<th>Complications</th>
<th>Treatment Outcome</th>
<th>Symptom Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>M</td>
<td>17 × 21</td>
<td>sidewall</td>
<td>hoarseness, vasovagal episodes</td>
<td>5 × 50, 5 × 40, 5 × 30</td>
<td>3</td>
<td>none</td>
<td>SMART 3 at 1 yr</td>
<td>resolved</td>
</tr>
<tr>
<td>78</td>
<td>F</td>
<td>13 × 15</td>
<td>fusiform</td>
<td>none</td>
<td>5 × 40</td>
<td>1</td>
<td>none</td>
<td>no residual</td>
<td>N/A</td>
</tr>
<tr>
<td>55</td>
<td>M</td>
<td>18 × 13</td>
<td>sidewall</td>
<td>hoarseness, TIAs</td>
<td>5 × 50, 5 × 50</td>
<td>2</td>
<td>none</td>
<td>SMART 2 post-procedure</td>
<td>N/A</td>
</tr>
</tbody>
</table>