As 2019 came to a close, a novel B-coronavirus, labeled by the World Health Organization as COVID-19, was noted to be spreading in China.1 The COVID-19 virus is an enveloped single-strand, positive-sense RNA, which means that the virus can use its RNA as the template from which to create proteins needed for propagation and, ultimately, spread. The name coronavirus refers to the characteristic crown-like appearance of these viruses that is seen on electron microscopy. By spring 2020, COVID-19 was spreading rapidly throughout the United States and Europe, and neurointerventionists soon found themselves on the frontline.2 The Journal of NeuroInterventional Surgery (JNIS) rapidly became the home for emerging research aimed at promoting the safe management of patients with COVID-19 and concomitant cerebrovascular disease and in understanding the consequences of the pandemic on patients, providers, and stroke care.

COVID-19 was initially described largely in terms of its protean pulmonary manifestations, but it soon became apparent that thrombogenic tendencies elevated the risk of stroke.3 Understanding how to approach potentially infectious patients became a major focus of a diverse group of articles being submitted to JNIS.7 New York City had a terrible COVID-19 outbreak relatively early in the US experience and were thus positioned to provide helpful observations. For imaging triage, Kihira reported a collective experience of 37.5% of patients with imaging-confirmed stroke having apical lung findings when undergoing CT angiography.5 Many societies, including the Society of NeuroInterventional Surgery (SNIS) sought to support their members through expert consensus recommendations.6 A remarkably personal comment by Dr J Mocco, a JNIS editor in the eye of the storm, became one of the most downloaded articles in the recent history of the journal.7

Overcoming the challenges of treating patients with emergent cerebrovascular disease during a potentially lethal pandemic was critical to neurointerventionists, and best practices were shared.8 As a process and metric-driven field, there were numerous submissions detailing unique experiences and approaches during the pandemic.9 Several published studies benefited from being part of multicenter longitudinal registries, the largest of which included 1364 patients in the primary analysis.10 The anesthetic type in mechanical thrombectomy was already a hot topic prior to the pandemic11; this debate has increased this past year with Nogueira and colleagues reporting a low conversion rate of 1.6% from monitored anesthesia care to general anesthesia during mechanical thrombectomy among a group of 1919 patients.12

Despite efforts by societies like SNIS to reinforce the criticality of patients getting to the hospital when symptoms of emergent large vessel occlusion (ELVO) present, including public service announcements and a novel YouTube video, many centers experienced a curious diminution in the number of patients with ELVO being treated during the pandemic.13 Even more alarming was the impact on access to mechanical thrombectomy in the African American community. During the COVID-19 pandemic, significantly fewer black patients were treated with thrombectomy than expected based on historical data (24% of 235 patients in February to May 2020 compared with 33% of 1848 patients between January 2017 and February 2020, p = 0.004).14

In an associated comment, Regenhardt and colleagues challenged providers to "craft more equitable and ethical systems of neurointerventional care in our communities and around the world.”

Building on a growing body of work by Fargen et al, authors surveyed neurointerventionists to determine the impact of COVID-19 on contemporary practice. Survey respondents reported a nearly complete cessation of elective practice, with 66% reporting increased career stress and 35% increased burnout.15 While neurointerventionists were less likely to perform elective cases and perhaps emergent ones, interestingly Lee and colleagues found that physicians were much more productive academically, with eight neuroscience-based journals having a combined average increase of 42.3% original research submissions.16 Not all research productivity was amplified by the pandemic; Rai studied and reported the impact of COVID-19 on clinical trials and found that ‘widespread disruption of neuroendovascular trials occurred.17 The same lead author explored the role that the pandemic might have in promoting remote electronic or phone consent for endovascular stroke trials.18

Neurointerventional surgery has always been a technologically driven field. COVID-19 broadened many of our thoughts on what that means. Several groups assessed the feasibility of teleproctoring and its impact on various elements of practice, including clinical trials.19 Telehealth had been a challenging area historically for a variety of reasons, including reimbursement. The pandemic accelerated trends and Lun et al found that virtual clinics were preferred by patients and physicians alike for non-urgent follow-up appointments.20

The COVID-19 pandemic continues to change our world in so many ways. Perhaps not surprisingly, neurointerventional care was heavily affected. JNIS has taken an active participatory role in informing its readership and has served as a venue for important research, shaping the way we care for patients with cerebrovascular disorders during this challenging time.

Twitter James M Milburn @dococ99, Robert W Regenhardt @DrWregen, Jens Fiehler @Fie0815 and Joshua A Hirsch @JoshuaAHirsch

Contributors All authors have participated in the drafting and editing of this commentary. Each has read and approved the final version.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests JMM, JF, KMF, and JAH are members of the Journal of NeuroInterventional Surgery editorial board.
Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

Data availability statement No data are available. Not applicable.

This article is made freely available for use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.

Accepted 5 May 2021
Published Online First 3 June 2021

ORCID iDs
James M Milburn http://orcid.org/0000-0003-3403-2628
Robert W Regenhardt http://orcid.org/0000-0003-2958-3484
Jens Fiehler http://orcid.org/0000-0001-8533-7478
Kyle M Fargen http://orcid.org/0000-0001-8979-1993
Joshua A Hirsch http://orcid.org/0000-0002-9594-8798

REFERENCES