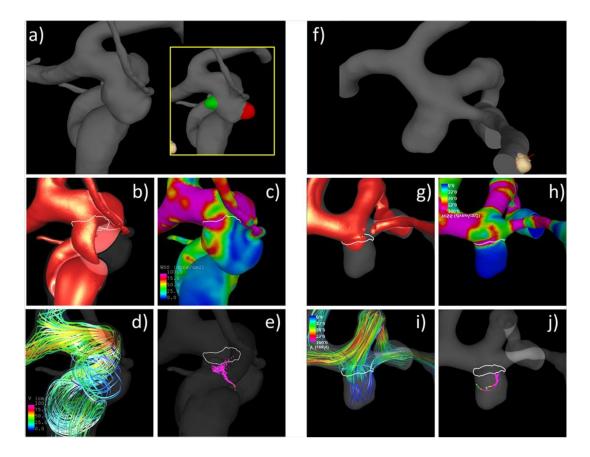
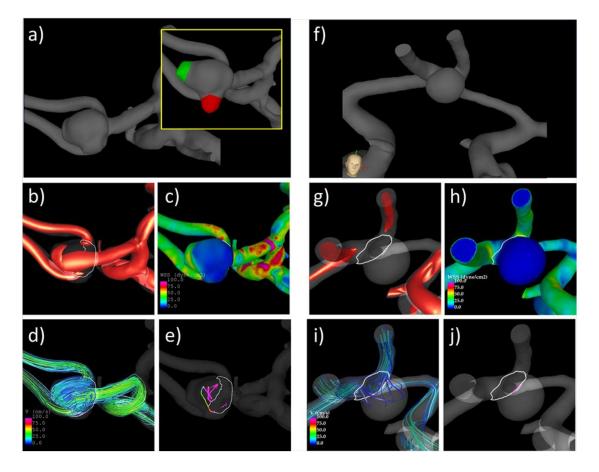

## **Supplementary Material**

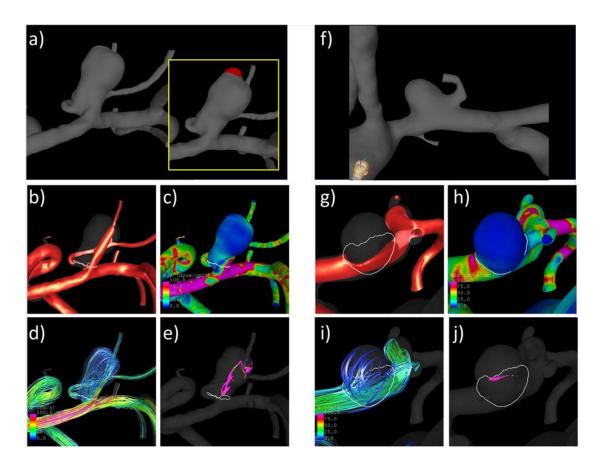
| Variable     | Meaning                                                     | Measures                                           |  |  |  |  |
|--------------|-------------------------------------------------------------|----------------------------------------------------|--|--|--|--|
| Hemodynamics |                                                             |                                                    |  |  |  |  |
| Q            | Mean aneurysm inflow rate (ml/s)                            | Strength of inflow jet                             |  |  |  |  |
| ICI          | Inflow concentration index                                  | Concentration of inflow jet                        |  |  |  |  |
| VE           | Mean aneurysm velocity (cm/s)                               | Aneurysm flow speed                                |  |  |  |  |
| VD           | Mean aneurysm viscous dissipation                           | Kinetic energy dissipation                         |  |  |  |  |
| corelen      | Total vortex core-line length                               | Flow complexity                                    |  |  |  |  |
| podent       | Proper orthogonal decomposition entropy                     | Flow stability                                     |  |  |  |  |
| WSSmax       | Maximum wall shear stress                                   | Strength of WSS                                    |  |  |  |  |
| WSSmean      | Time averaged mean wall shear stress                        |                                                    |  |  |  |  |
| MaxWSSnorm   | Max normalized WSS (over vessel WSS)                        | Relative strength of WSS compared to parent vessel |  |  |  |  |
| WSSnorm      | Mean normalized WSS                                         |                                                    |  |  |  |  |
| LSA          | Percent of aneurysm area under low WSS                      | Area exposed to low WSS                            |  |  |  |  |
| SCI          | Shear concentration index                                   | Concentration of WSS distribution                  |  |  |  |  |
| OSImax       | Maximum oscillatory shear index                             | - Oscillation of WSS                               |  |  |  |  |
| OSImean      | Mean oscillatory shear index                                |                                                    |  |  |  |  |
| nCrPoints    | Time-averaged number of critical points in WSS vector field | WSS field topology & complexity                    |  |  |  |  |
| Geometry     |                                                             |                                                    |  |  |  |  |
| Asize        | Aneurysm maximum size                                       | Aneurysm size                                      |  |  |  |  |
| Nsize        | Neck maximum size                                           | Neck size                                          |  |  |  |  |
| SR           | Size ratio                                                  | Relative aneurysm to vessel size                   |  |  |  |  |
| GAA          | Gaussian curvature                                          | Mean radius of curvature                           |  |  |  |  |
| AR           | Aspect ratio                                                | Aneurysm depth elongation                          |  |  |  |  |
| VOR          | Volume to ostium ratio                                      | Aneurysm widening elongation                       |  |  |  |  |
| BF           | Bottleneck factor                                           | Relative aneurysm to neck width                    |  |  |  |  |
| NSI          | Non-sphericity index                                        | Departure from spherical shape                     |  |  |  |  |
| CR           | Convexity ratio                                             | Shape distortion                                   |  |  |  |  |
| UI           | Undulation index                                            | Surface irregularity                               |  |  |  |  |


**Supplementary Table I.** Hemodynamic and geometric variables. For detailed mathematical definitions of these variables and algorithms to compute them, see.<sup>14,16</sup>

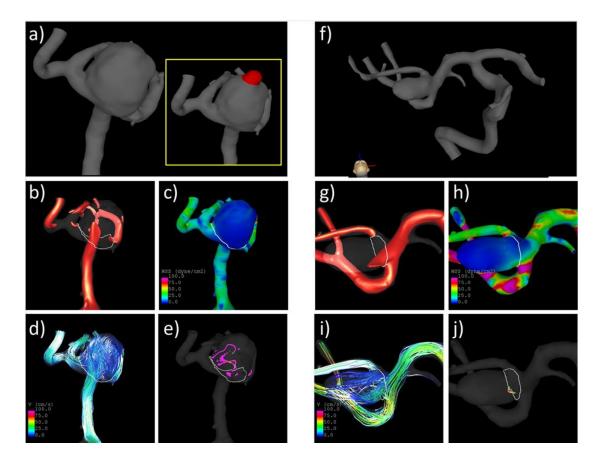
| Characteristic               | Variable                       | Aneurysms with  | Aneurysms       | _ p-value | Adjusted<br>p-value |  |  |  |
|------------------------------|--------------------------------|-----------------|-----------------|-----------|---------------------|--|--|--|
|                              |                                | deleted blebs   | without blebs   |           |                     |  |  |  |
|                              |                                | Mean $\pm$ SD   | Mean $\pm$ SD   |           |                     |  |  |  |
| Hemodynamics                 |                                |                 |                 |           |                     |  |  |  |
| Inflow jet                   | Q (ml/s)                       | 0.57 ± 0.36     | $0.34 \pm 0.34$ | <0.0001*  | 0.0002*             |  |  |  |
|                              | ICI                            | 0.60 ± 0.43     | 0.45 ± 0.58     | 0.0005*   | 0.0011*             |  |  |  |
| Flow pattern                 | VE (cm/s)                      | 11.4 ± 7.08     | 7.96 ± 6.36     | 0.0032*   | 0.0062*             |  |  |  |
|                              | VD                             | 1838 ± 2688     | 1224 ± 2202     | 0.0116*   | 0.0181*             |  |  |  |
|                              | corelen (mm)                   | $1.00 \pm 0.62$ | 0.49 ± 0.58     | <0.0001*  | <0.0001*            |  |  |  |
|                              | podent                         | 0.18 ± 0.15     | $0.16 \pm 0.13$ | 0.1689    | 0.2010              |  |  |  |
| Wall shear<br>stress pattern | WSSmax (dyn/cm <sup>2</sup> )  | 447 ± 490       | 174 ± 138       | <0.0001*  | <0.0001*            |  |  |  |
|                              | WSSmean (dyn/cm <sup>2</sup> ) | 26.5 ± 19.5     | 18.9 ± 17.2     | 0.0110*   | 0.0181*             |  |  |  |
|                              | MaxWSSnorm                     | 8.49 ± 8.71     | 4.75 ± 2.26     | 0.0003*   | 0.0007*             |  |  |  |
|                              | WSSnorm                        | 0.53 ± 0.31     | 0.51 ± 0.38     | 0.4035    | 0.4386              |  |  |  |
|                              | LSA (%)                        | 46.4 ± 28.3     | 50.1 ± 35.6     | 0.4425    | 0.4610              |  |  |  |
|                              | SCI                            | 5.01 ± 4.70     | $3.14 \pm 3.81$ | 0.0068*   | 0.0121*             |  |  |  |
|                              | OSImax                         | $0.26 \pm 0.11$ | $0.22 \pm 0.12$ | 0.0736    | 0.0920              |  |  |  |
|                              | OSImean                        | $0.01 \pm 0.01$ | $0.01 \pm 0.01$ | 0.5921    | 0.5921              |  |  |  |
|                              | nCrPoints                      | 1.90 ± 0.95     | 1.23 ± 0.86     | 0.0002*   | 0.0007*             |  |  |  |
| Geometry                     |                                |                 |                 |           |                     |  |  |  |
| Size                         | Asize (mm)                     | 5.5 ± 0.9       | 4.4 ± 1.5       | 0.0001*   | 0.0004*             |  |  |  |
|                              | Nsize (mm)                     | $4.0 \pm 0.1$   | 3.7 ± 0.1       | 0.1804    | 0.2050              |  |  |  |
|                              | SR                             | 1.96 ± 0.81     | $1.54 \pm 0.80$ | 0.0002*   | 0.0007*             |  |  |  |
|                              | GAA (cm <sup>-1</sup> )        | 13.4 ± 4.9      | 25.3 ± 26.3     | 0.0148*   | 0.0217*             |  |  |  |
| Elongation                   | AR                             | $1.00 \pm 0.54$ | 0.73 ± 0.43     | 0.0006*   | 0.0013*             |  |  |  |
|                              | VOR (mm)                       | 0.49 ± 0.42     | 0.24 ± 0.28     | <0.0001*  | < 0.0001*           |  |  |  |
|                              | BF                             | $1.26 \pm 0.40$ | 1.03 ± 0.25     | <0.0001*  | <0.0001*            |  |  |  |
| Shape<br>distortion          | NSI                            | 0.21 ± 0.05     | $0.18 \pm 0.05$ | 0.0001*   | 0.0005*             |  |  |  |
|                              | CR                             | 0.79 ± 0.14     | 0.75 ± 0.12     | 0.0542    | 0.0713              |  |  |  |
| Irregularity                 | UI                             | 0.21 ± 0.14     | 0.25 ± 0.12     | 0.0542    | 0.0713              |  |  |  |


**Supplementary Table II.** Hemodynamic and geometric characteristics of small aneurysms (<7mm) with blebs (after bleb removal, mimicking conditions before bleb formation) and aneurysms without blebs. When restricting the analysis to aneurysms smaller than 7mm, there were 36 aneurysms with blebs and 110 without blebs. Statistically significant differences are indicated with a "\*". See Supplementary Table I for more details on the hemodynamic and geometric variables.




**Supplementary Figure I.** Example of bleb marking on vascular aneurysm model with the aid of curvature maps to decide if surface irregularities constitute blebs or not: a) volume rendering of 3D angiography image, where one bleb is clearly seen (red arrow) and two smaller suspicious "bumps" are also seen (yellow arrows), b) 3D patient-specific vascular model reconstructed from 3D angiography image, where the bleb (read arrow) and the bumps (yellow arrows) are also seen, c) aneurysm sac colored with local surface Gaussian curvature (red= positive curvature, blue= negative curvature, gray= no curvature) where the "true" bleb (red arrow) is seen as a region of positive Gaussian curvature surrounded by a band of negative Gaussian curvature, while the "bumps" (yellow arrows) are seen as regions of positive Gaussian curvature but are not surrounded by bands of negative Gaussian curvature, and d) marking of the "true" bleb (red arrow) using the ChePen3D tool and the curvature map for guidance. Note that curvature maps are used to aid the interactive identification and marking of blebs which should appear as well-defined distinct and separate sub-structures on the aneurysm sac.




**Supplementary Figure II.** Examples of hemodynamics (at peak systole) for PCOM aneurysms with and without blebs. Left panel – aneurysm with blebs removed (surrogate for IA prior to bleb formation): a) geometry of PCOM aneurysm after removal of two blebs (insert shows marked blebs in red and green), b) inflow jet (iso-velocity surface), c) WSS magnitude, d) flow pattern (streamlines), e) vortex corelines. Right panel – aneurysm without bleb: f) geometry of PCOM aneurysm without bleb, g) inflow jet, h) WSS magnitude, i) flow pattern, and j) vortex corelines.



**Supplementary Figure III.** Examples of hemodynamics (at peak systole) for ACOM aneurysms with and without blebs. Left panel – aneurysm with blebs removed (surrogate for IA prior to bleb formation): a) geometry of ACOM aneurysm after removal of two blebs (insert shows marked blebs in red and green), b) inflow jet (iso-velocity surface), c) WSS magnitude, d) flow pattern (streamlines), e) vortex corelines. Right panel – aneurysm without bleb: f) geometry of ACOM aneurysm without bleb, g) inflow jet, h) WSS magnitude, i) flow pattern, and j) vortex corelines.



**Supplementary Figure IV.** Examples of hemodynamics (at peak systole) for MCA-M1 aneurysms with and without blebs. Left panel – aneurysm with bleb removed (surrogate for IA prior to bleb formation): a) geometry of MCA-M1 aneurysm after removal of one bleb (insert shows marked bleb in red), b) inflow jet (iso-velocity surface), c) WSS magnitude, d) flow pattern (streamlines), e) vortex corelines. Right panel – aneurysm without bleb: f) geometry of MCA-M1 aneurysm without bleb, g) inflow jet, h) WSS magnitude, i) flow pattern, and j) vortex corelines.



**Supplementary Figure V.** Examples of hemodynamics (at peak systole) for MCA-bifurcation aneurysms with and without blebs. Left panel – aneurysm with bleb removed (surrogate for bleb prior to bleb formation): a) geometry of MCA-bifurcation aneurysm after removal of one bleb (insert shows marked bleb in red), b) inflow jet (iso-velocity surface), c) WSS magnitude, d) flow pattern (streamlines), e) vortex corelines. Right panel – aneurysm without bleb: f) geometry of MCA-bifurcation aneurysm without bleb; g) inflow jet, h) mean WSS magnitude, i) flow pattern, and j) vortex corelines.