Abstracts

TRENDS IN PEDIATRIC NEUROINTERVENTIONAL RADIOLOGY: A SURVEY OF A 23-YEAR EXPERIENCE IN INFANTS LESS THAN ONE YEAR OF AGE

Background and Purpose Pediatric neurointerventional radiology is an evolving subspecialty with growing indications and technological advancement such as miniaturization of devices. The ability to perform these procedures is continuously balanced with necessity given the inherently higher risks of radiation and cerebrovascular injury in infants. Endovascular treatment of arteriovenous shunting lesions including vein of Galen malformations (VOGM), arteriovenous malformations (AVM) and arteriovenous fistulas (AVF) has been well established in pediatric patients including those of a very young age. More recently, intra-arterial chemotherapy (IAC) for the treatment of retinoblastoma has been used in this age group. The purpose of this study is to review our institution’s neurointerventional experience in infants less than 1 year of age in order to elucidate trends in this delicate patient population.

Methods We retrospectively identified 123 patients from a neurointerventional database spanning 23 years (January 1997-October 2020) who underwent 209 procedures. Treatment type, indication, and location as well as patient demographics were extracted from the medical record. We excluded 7 patients with an age of greater than one year at the time of procedure as well as those with procedure requests without completion.

Results Neurointerventional procedures were performed as early as day of life 0 in a patient with an AVM resulting in hydrops fetalis. Average age of intervention in the first year of life is 5.8 months, and 37 of 209 procedures were completed in neonates (less than one month of age). IAC for the treatment of retinoblastoma comprised 33% of neurointerventional procedures completed in infants less than one year of age followed by lymphatic malformations (19%), VOGM (13%), and dural AVF (10%). Less frequent indications include non-Galenic pial AVF (4%) and tumor embolization (2%). Only 4 of 209 angiograms were negative. The total number of interventions has increased which is likely secondary to the onset of retinoblastoma treatment in 2010 at our institution.

Conclusion The introduction of IAC for the treatment of retinoblastoma in the last decade is the primary driver for the increased trend in neurointerventional procedures completed in patients less than one year of age from 1997 to 2020.

REFERENCES

NEUTROPENIA AFTER INTRA-ARTERIAL CHEMOTHERAPY FOR THE TREATMENT OF RETINOBLASTOMA

A Baker*, S Ammanuel, M Caton, K Narsinh, A Ashfar, A Banejee, D Cooke, C Dowd, M Amans, V Halbach, R Higashida, S Hetts. 1Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA; 2University of California, San Francisco, San Francisco, CA; 3Department of Ophthalmology, University of California, San Francisco, San Francisco, CA; 4Department of Neurosurgery, University of California, San Francisco, San Francisco, CA

Background and Purpose Intra-arterial chemotherapy (IAC) infusion for the treatment of intraocular retinoblastoma is an effective and relatively safe therapeutic option. However, one of the well described systemic complications following IAC is neutropenia. The purpose of this retrospective study is to examine the incidence of neutropenia over the course of treatment for each patient, and to further analyze if the incidence is affected by systemic chemotherapy or number of chemotherapeutic agents used for IAC.

Methods We retrospectively identified 76 patients from a neurointerventional database spanning 10 years (March 2010 - August 2020) who underwent 214 cycles of IAC. Patient demographics, treatment course, angiographic technique as well as pre and post procedural complete blood counts were extracted from the medical record. Neutropenia, including all grades I-IV, is defined by an absolute neutrophil count (ANC) equal to or less than 1.5 x 10^9/L. Eleven patients who did not obtain a post-procedural complete blood count during their treatment course were excluded. The presence of postprocedural neutropenia was further subdivided based on whether systemic intra-venous chemotherapy was administered as well as according to the number of intra-arterial chemotherapeutic agents.

Results The overall incidence of neutropenia was 62% in our total patient cohort. There was no statistically significant difference between the incidence of neutropenia in patients who did and did not receive systemic chemotherapy. The majority of patients received two chemotherapeutic agents (melphalan and topotecan), of which 58% and 54% of patients experienced neutropenia with and without systemic chemotherapy, respectively. The highest incidence of neutropenia was 100%, in five patients who received systemic chemotherapy and a three agent intra-arterial regimen (melphalan, topotecan, carboplatin).

Conclusion Neutropenia is a systemic toxicity in more than half of patients who receive IAC infusion for intraocular retinoblastoma, and does not significantly differ in patients who do and do not receive systemic chemotherapy.

REFERENCES

E-072 THE RELATIONSHIP BETWEEN CEREBRAL VASOSPASM AND HERPESVIRUS REACTIVATION AFTER ANEURYSMAL SUBARACHNOID HEMORRHAGE

M Walker, 1A Mohammed, 1C Kelly, 1S Levy, 2M Erdoes, 1C Johnston, 1M Levitt, 1Neurological Surgery, University of Washington, Seattle, WA; 2Convent of the Sacred Heart High School, New York, NY; 1Allergy and Infectious Disease, University of Washington, Seattle, WA

Background Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease frequently leading to death or poor functional outcome. A major source of disability from aSAH is the development of cerebral vasospasm, which is defined as narrowing of the large and medium-sized intracranial arteries. Limited information exists regarding underlying anatomic mechanisms of vasospasm after aSAH. Based on the anatomic location of resident herpesvirus and their activation in response to adrenergic stress, we propose that herpesvirus reactivation in response to adrenergic activation of head and neck ganglia during aSAH will be temporally related to cerebral vasospasm.

Methods We developed an IRB-approved protocol for non-invasive bedside testing of viral shedding in tears and saliva in aSAH patients. The protocol was a joint effort with Infectious Disease and our virology laboratory. Viral specimens and catecholamines were obtained at admission and at days 4, 7, 10 and 14 post-aSAH. These values were compared to standard-of-care metrics including transcranial doppler, clinical examination and radiological studies. Herpesvirus serology was also obtained.

Results Our protocol successfully yielded samples for analysis in all cases. Initially, serum catecholamines were utilized but collection methodology and requirements resulted in unusable samples. Further, many patients require pressor support using parenteral catecholamines and serum results may not be valid during hospitalization. Instead, salivary alpha-amylase is being tested as a surrogate marker, with collection limited to those patients not requiring catecholamine pressor support within the previous 24 hours. In our preliminary dataset, integrity analyses demonstrated high quality yields of saliva and tears for quantitative PCR analysis. Once collection is complete, we aim to present the collection and storage protocol for dissemination and highlight the training required for specimen processing.

Conclusion We have developed a novel protocol for the analysis of viral shedding and catecholamine measurement in post-aSAH patients. The specimens are captured during the patient’s hospitalization and allow us to study the relationship between reactivation of chronic herpesvirus infection and cerebral vasospasm after aSAH.

Disclosures M. Walker: 2; C Medtronic. A. Edlund: None. C. Dupont: None. G. Tan: None. C. Kelly: None. S. Levy: None. S. Fodero: None. M. Levitt: 1; C Medtronic, Stryker. 2; C Medtronic, Metis Innovative. 4; C eLoupes, Cerebrotech, Synchron.