d diveters for a better understanding of comparative safety and effectiveness among the different devices.

Disclosures M. Waqas: None. R. Dossani: None. M. Alkhaldi: None. J. Neveu: None. J. Cappuzzo: None. J. Liam: None. A. Khan: None. V. Lazarov: None. A. Monteiro: None. J. Davies: 1; C; National Center for Advancing Translational Sciences of the National Institutes of Health under award number KL2TR001413 to the University at Buffalo. A. Siddiqui: 2; C; Amnis Therapeutics, Boston Scientific, Canon Medical Systems USA Inc., Cerebrotech Medical Systems Inc., Cerenovus, Corindus Inc., Endostream Medical Ltd., Imperative Care, Inc. Integra LifeSciences C. 4; C; Adona Medical, Inc, Amnis Vaus, Corindus Inc., Endostream Medical Ltd., Imperative Care, Inc. Integra LifeSciences C. 4; C; Adona Medical, Inc, Amnis Therapeutics, (Purchased by Boston Scientific October 2017), Blink TBI Inc., Buffalo Technology Partners Inc., Cerebrotech Medical Systems, Inc., Cognition Medical, Endostrea. E. Levy: 2; C; Claret Medical, GLG Consulting, Guidepoint Global, Imperative Care, Medtronic, Rebound, StimMed, 4; C; NeXtGen Biologics, RAPID Medical, Claret Medical, Cognition Medical, Imperative Care (formerly the Stroke Project), Rebound Therapeutics, StimMed, Three Rivers Medical.

E-130 USE OF WALRUS BALLOON GUIDE CATHETER FOR PROXIMAL FLOW ARREST DURING NEUROINTERVENTIONAL PROCEDURES

Introduction The use of balloon guide catheters (BGCs) for proximal flow arrest during neurointerventional procedures is limited due to incompatibility of these catheters with large-bore aspiration catheters and difficulty in device navigation. The objective of our study was to describe the use of Walrus (Q’Apel Medical, Fremont, CA), a new 8-French (F) BGC, with a variety of aspiration catheters and procedures requiring flow arrest.

Methods Consecutive cases using Walrus BGCs for proximal flow arrest during mechanical thrombectomy for acute stroke cases was recorded. Procedure indication, vessel occlusion site, technique, first-pass effect (modified thrombolysis in cerebral infarction score of 2C or 3 after first recanalization attempt), and complications were recorded and evaluated statistically.

Results Our study included 57 patients: all (100%) underwent mechanical thrombectomy. Besides mechanical thrombectomy, the Walrus BGC was used in conjunction with the following techniques: stent retrieval in 2 patient (3.5%), Solumbra in 41 (71.9%), and aspiration-first in 14 (24.6%). Eight different aspiration catheters were used in 56 of these 57 procedures. First-pass effect was achieved in 36 (63.2%) of 57 procedures. Four cases (7.0%) experienced intraoperative complications and 2 (3.5%) died during in-hospital stay.

Conclusion Our study demonstrates Walrus BGC as an excellent 8F navigable guide catheter compatible with most available aspiration catheters. With a larger inner diameter and compatibility with most available aspiration catheters, it can be used to achieve proximal flow arrest during mechanical thrombectomy and possibly for other neurointervention procedures in the future.

Abbreviations and acronyms ADAPT, a direct aspiration first pass technique; BGC, balloon guide catheter; F, French; FPE, first-pass effect; ICA, internal carotid artery; ID, inner diameter; mFPE, modified first-pass effect; mRS, modified Rankin scale; mTICI, modified thrombolysis in cerebral infarction; OD, outer diameter; STRATIS, Systematic Evaluation of Patients Treated with Neurothrombectomy Devices for Acute Ischemic Stroke