0 to 2 at discharge. Association of outcomes with prior CMBs was quantified using multiple logistic regression.

**Results** Among 155 patients included in the analysis (mean age 67.5, SD 1.15; 56.2% female), 20 (12.9%) had CMBs on GRE imaging prior to EVT. Among those with CMBs, 8 (40%) patients had strictly lobar, 4 (20%) had mixed cortical/subcortical, and 5 (25%) patients had high burden (>5) microbleeds. Older age, female sex, and presence of atrial fibrillation were significantly higher in patients with CMBs. Overall, 41 (26.4%) developed ICH, among whom 9 (5.8%) were symptomatic. In multivariable analysis adjusting for age, sex, presenting NIHSS, hypertension, diabetes mellitus, atrial fibrillation, intravenous tPA, and successful recanalization, there was no statistically significant association between the presence of CMB and ICH (OR 1.19, 95% CI 0.25-4.90, p=0.83) or favorable clinical outcome at discharge (OR 1.25, 95% CI 0.38-4.01, p=0.71). Results remained unchanged in subgroup analyses based on CMB location or burden.

**Conclusion** Our analysis indicates that the presence of CMBs is not significantly associated with poor clinical outcome or the risk of ICH following EVT.

**Disclosures** H. Saber: None. J. Saver: None. V. Szeder: None. M. Nour: None. K. Khatibi: None. L. Ponce Mejia: None. S. Tatashima: 2; C; Medtronic, Stryker, Cereneovus. G. Colby: 2; C; Medtronic, Stryker, MicroVention. N. Kaneko: None. R. Jahan: 2; C; Medtronic. G. Duckwiler: 2; C; Medtronic. D. Liebeskind: 2; C; Medtronic.

---

**P-017 EVALUATION OF RADIOFREQUENCY-INDUCED HEATING IN AN X-RAY AND MR-VISIBLE INTERVENTIONAL CATHETER AT 3.0 T**

1 B Kilbride*, 1 J Massachi, 2 S Ahn, 2 K Mueller, 3 C Jordan, 1 A Losey, 1 A Martin, 1 T Moore, 1 M Wilson, 1 S Hetts. 1 Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA; 2 Siemens Medical Solutions, Malvern, PA; 3 Texas AandM University, Houston, TX; 5 Temple University, Philadelphia, PA

**Introduction** Successful mechanical thrombectomy in the case of acute ischemic stroke can be inferred from the angiogram, and MRI information can provide insight regarding extent of cerebral infarct and whether further reperfusion therapy may increase the risk of hemorrhage. Recently, it has been shown that intra-procedural MRI can influence critical decision making to pursue further endovascular therapy. These decisions have been enabled by combined X-ray angiography MRI suites; all the while compatible tooling has lagged. Here, we have performed initial safety tests in vitro to validate the safety of a polymer-based guide catheter with in-wall X-ray and MR-visible markers.

**Methods** A guide catheter prototype was built using polymer-based filament in catheter fabrication facility (Penumbra, Inc., Alameda, CA). Four circumferential marker bands were painted 2 cm from the distal tip. Markers were an epoxy-based radiopaque ink (Creative Materials, Ayer, MA) doped with iron(III) oxide (Fe3O4) nanoparticles of 20-40 nm diameter (Alfa Aesar, Tewksbury, MA). The device was then laminated with a multi-durometer thermoplastic jacket. Experiments were performed in a clinical biplane x-ray neuroangiography and 3.0 T MRI suite (Magnetom Skyra, Siemens Healthineers, AG, Forchheim, Germany).

The catheter was embedded into an acrylic phantom, per ASTM F2182-19e2. The head portion was made of a polyacrylamide gel and the body was filled with saline. The catheter extended 25 cm into the head and was laterally positioned 17 cm from the midline of the body and 6 cm from the midline of the head. Radiofrequency-induced heating of the prototype was assessed for worst-case heating as a function of insertion length. Heating directly adjacent to the catheter was measured using fluoroptic temperature probes (FOT Lab Kit with STF probes; LumaSense, Santa Clara, California). Two probes were embedded at the distal tip of the catheter and 10 cm proximal to the tip. Temperature was continuously measured over the course of 6 minutes; 2 minutes of baseline prior to imaging, 2 minutes of imaging using a True FISP sequence with a SAR of 4 W/kg, and 2 minutes of equilibration after imaging. The immersed length started at 95 cm and was shortened by 5 cm after each 6-minute test until the immersed length was 60 cm.

**Results** Maximum temperature and change in temperature were recorded. The largest temperature change occurred at 95 cm, where the temperature rose by 0.45 °C and 0.70 °C at the device tip and 10 cm proximal to the tip, respectively. Over the entire testing period, the local temperature around the device tip and 10 cm proximal to the tip rose 1.48°C and 1.68°C, respectively.

**Conclusions** Initial immersion tests suggest that the worst-case scenario for RF-induced heating of our guide catheter prototype occurs at 95 cm. During the period of our tests, our prototype remained safely under the maximum permitted temperature rise of +2°C/hr of exposure. This study suggests that our guide catheter may be retained during an intra-procedural MRI without the safety risk of RF-induced device heating over time to the patient.