derived from Fractional Flow Reserve without induced hypere-
mia. An FPR, with $\%D_P < 25\%$ (equivalent to > 0.75
FPR), is a strong indicator of patent artery flow. FPR during
balloon-stent deployment was simulated using Computational
Fluid Dynamics (figure 1b) and validated using benchtop mod-
ing in a circle of Willis (CW) vessel phantom equipped with
real-time branch pressure and flow monitoring.

Results

A balloon-stent with a stent ID $> 56\%$ of parent
artery ID maintained $\%D_P < 25\%$ during deployment and will
minimize ischemic risk. A balloon-stent device can temporarily
provide aneurysm neck protection during complementary
device deployment while maintaining blood flow in the parent
artery. A 2.6F Penumbra Velocity, jailed next to a balloon-
stent device permitted an inflation ID $> 56\%$ of parent artery
ID, will maintain $\%D_P < 25\%$ during deployment and will
minimize ischemic risk. The prototype maintained safe FPR
and parent vessel during in vitro and CFD simulations.

Conclusion

A balloon-stent device can provide neuro-interven-
tional surgeons with a larger time-frame to deploy embolic
without blood flow arrest and the need for repeated balloon
inflation/deflations. In addition, this novel medical device has
the potential to provide a smooth surface at the aneurysm
neck for consistent device placement, minimize parent vessel
trauma, eliminate ischemic effects distal to the parent artery,
and minimize intra-saccular flow remnants pre- and post-treat-
ment. Prototyping work on the balloon-stent device is cur-
rently underway.

Disclosures

O. Asgari: 1; C; the 2021 Flinn Foundation Medi-
cal Technology Seed Grant. H. Berns: None. A. Arzani:
None. T. Becker: None.

**O-007 LENGTH OF HOSPITAL STAY IN ANEURYSMAL
SUBARACHNOID HEMORRHAGE PATIENTS WITHOUT
VASOSPASM ON ANGIOGRAPHY: POTENTIAL FOR A
FAST-TRACK DISCHARGE COHORT**

J. Catapano*, V. Srinivasan, K. Rumalla, M. Labib, C. Nguyen, T. Cole, J. Baranoski,
C. Rutledge, R. Rahmani, M. Lavtron, A. Ducuet, F. Albuquerque. Neurosurgery, BNI, Phoenix,
AZ

Background

Aneurysmal subarachnoid hemorrhage (aSAH) patients frequently suffer from vasospasm. We analyzed the
association between absence of early angiographic vasospasm and early discharge.

Methods

All treated aSAH patients (August 1, 2007-July 31, 2019) at a single tertiary center were reviewed. Patients undergoing diagnostic digital subtraction angiogra-
phy (DSA) on post-aSAH days 5 to 7 were included in the
analysis; cohorts with and without angiographic vasospasm
angiographic reports by attending neurovascular surgeons)
were compared. Primary outcome was hospital length of
stay; secondary outcomes were ICU length of stay, 30-day return to the emergency department (ED) and poor neuro-
logic outcome, defined as a modified Rankin Score (mRS)
score > 2.

Results

A total of 298 patients underwent DSA on post-aSAH
day 5, 6, or 7. Most patients ($n=188, 63\%$) had angiographic
vasospasm, whereas 110 patients (37\%) did not. The no-vaso-
spasm cohort had a significantly lower mean length of hospi-
tal stay (18.0±7.1 days) than the vasospasm group (22.4±8.6
(days) ($p<0.001$). The 2 cohorts did not differ significantly in
the percentage of patients with mRS scores > 2 at last follow-
up or those returning to the ED before 30 days. After adjust-
ment for Hunt and Hess scores, Fisher grade, admission Glas-
gow Coma Scale score, and age, logistic regression analysis

Disclosures

O. Asgari: 1; C; the 2021 Flinn Foundation Medi-
cal Technology Seed Grant. H. Berns: None. A. Arzani:
None. T. Becker: None.

Abstract O-006 Figure 1

a) CAD rendering of the balloon stent microcatheter device and cross-sectional view (upper right); b) results of a
Computational Fluid Dynamic (CFD) simulation rendering velocity streamlines of an ICA aneurysm

Abstract O-007 Table 1

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Vasospasm (n=110)</th>
<th>Vasospasm (n=188)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>58.6 (12.9)</td>
<td>53.1 (12.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>GCS on admission</td>
<td>11.9 (3.8)</td>
<td>10.9 (3.8)</td>
<td>0.02</td>
</tr>
<tr>
<td>mRS at last follow-up</td>
<td>2.5 (2.0)</td>
<td>3.1 (2.0)</td>
<td>0.01</td>
</tr>
<tr>
<td>Hunt and Hess grade</td>
<td>2.8 (1.1)</td>
<td>3.1 (1.1)</td>
<td>0.01</td>
</tr>
<tr>
<td>Fisher grade</td>
<td>3.7 (0.7)</td>
<td>3.7 (0.6)</td>
<td>0.36</td>
</tr>
<tr>
<td>Aneurysm size (mm)</td>
<td>7.0 (4.2)</td>
<td>6.5 (4.4)</td>
<td>0.36</td>
</tr>
<tr>
<td>Total hospital stay (days)</td>
<td>18.0 (7.1)</td>
<td>22.4 (8.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Last follow-up (days)</td>
<td>835.4 (1335.6)</td>
<td>834.6 (1319.0)</td>
<td>0.99</td>
</tr>
<tr>
<td>Open surgical clipping, n (%)</td>
<td>55 (50)</td>
<td>122 (65)</td>
<td>0.01</td>
</tr>
<tr>
<td>VPS, n (%)</td>
<td>26 (24)</td>
<td>51 (27)</td>
<td>0.58</td>
</tr>
<tr>
<td>DSA complication, n (%)</td>
<td>3 (3)</td>
<td>7 (4)</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Data are presented as mean (SD) unless otherwise indicated.

Angiographic vasospasm is defined on the basis of DSA on post-aSAH days 5–7. Abbreviations: aSAH, aneurysmal subarachnoid hemorrhage; DSA, digital subtraction angiography; GCS, Glasgow Coma Scale; mRS, modified Rankin Scale; VPS, ventriculo-peritoneal shunt.
showed that absence of vasospasm on post-aSAH day 5-7 predicted discharge on or before hospital day 14 (OR 3.4, 95% CI 1.8-6.4, p<0.001).

Conclusion
Lack of angiographic vasospasm 5 to 7 days after aSAH is associated with shorter hospitalizations, with no increase in 30-day ED visits or poor neurologic outcome.

Disclosures

Abstract O-008 Table 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Vasospasm (n=110)</th>
<th>Vasospasm (n=188)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital discharge ≤ post-aSAH day 14</td>
<td>37 (34)</td>
<td>22 (12)</td>
<td><0.001</td>
</tr>
<tr>
<td>mRS score > 2 at last follow-up</td>
<td>51 (46)</td>
<td>106 (56)</td>
<td>0.12</td>
</tr>
<tr>
<td>mRS score > 2 at last follow-up with at least 6 months of follow-up</td>
<td>12 (26)</td>
<td>21 (27)</td>
<td>0.86</td>
</tr>
<tr>
<td>Return to the ED within 30 days of discharge</td>
<td>13 (12)</td>
<td>30 (16)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

*Angiographic vasospasm defined on the basis of digital subtraction angiography on post-aSAH day 5-7.
Abbreviations: aSAH, aneurysmal subarachnoid hemorrhage; ED, emergency department; mRS, modified Rankin Scale.

Abstract O-008 Table 3

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LOS≤14 days (n=59)</th>
<th>LOS>14 days (n=298)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), yr</td>
<td>58.0 (13.7)</td>
<td>54.4 (12.4)</td>
<td>0.054</td>
</tr>
<tr>
<td>Preexisting comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>12 (20)</td>
<td>54 (18)</td>
<td>0.68</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>1 (2)</td>
<td>2 (0.7)</td>
<td>0.55</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3 (5)</td>
<td>42 (14)</td>
<td>0.057</td>
</tr>
<tr>
<td>Hypertension</td>
<td>42 (71)</td>
<td>235 (79)</td>
<td>0.46</td>
</tr>
<tr>
<td>GCS score on admission, mean (SD)</td>
<td>12.8 (3.7)</td>
<td>10.9 (3.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hunt and Hess grade, mean (SD)</td>
<td>2.6 (1.1)</td>
<td>3.1 (1.0)</td>
<td>0.002</td>
</tr>
<tr>
<td>Fisher grade, mean (SD)</td>
<td>3.6 (0.8)</td>
<td>3.7 (0.6)</td>
<td>0.16</td>
</tr>
<tr>
<td>Open surgical clipping</td>
<td>35 (59)</td>
<td>177 (59)</td>
<td>0.99</td>
</tr>
<tr>
<td>Angiographic clipping</td>
<td>22 (37)</td>
<td>207 (69)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*Data are presented as number (percentage) unless otherwise indicated.
Abbreviations: aSAH, aneurysmal subarachnoid hemorrhage; GCS, Glasgow Coma Scale; LOS, length of stay.

Abstract O-008

ENDOVASCULAR EMBOLIZATION VS. SURGERY FOR Ruptured Intracranial Aneurysms: A PROPENSITY-MATCHED STUDY OF 2,740 PATIENTS IN THE TRINETX ANALYTICS NETWORK

1A Nia*, 1R Lall, 1P Kar, 1V Srinivasan, 1University of Texas Medical Branch, Galveston, TX; 2Barrow Neurological Institute, Phoenix, AZ

10.1136/neurintsurg-2021-SNIS.8

Background
Endovascular embolization (e.g. coiling) and surgery (i.e. clipping) are both treatment strategies for ruptured intracranial aneurysms. Endovascular treatment for ruptured