Materials and Methods Human vascular tissue was assessed and compared to standard silicone and new UV-cured polymers (VC-A30). Vessel materials were characterized with eight mechanical tests: compressive, shear, and tensile elastic modulus, Poisson’s ratio, hardness, radial compression, compliance, and lubricity. Half of these testing methods were non-destructive, allowing for multiple mechanical and histological-characterizations of the same human tissue sample.

Results Histological evaluation of cellular and extracellular matrix of the human vessels showed the dynamicmoduli and Poison’s ratio tests were non-destructive (figure 1 Left), whereas the destructive hardestest created significant tearing of the vessel layers (figure 1 Middle). Fluid absorption by VC-A30 showedstatistically significant softening of mechanical properties, stabilizing after 4 days in phosphate-buffered saline (PBS). VC-A30 exhibited statistically similar results to human vasculature, with% error less than 29%, in 5 of 8 mechanical tests, versus 1 of 8 for standard silicone. Human vessel lubricity (determined by trackability within a vessel) statistically matched the lubricity of all the VC-A30 samples (figure 1 Right).

Conclusion VC-A30 provides a new option for creating translucent in vitro vascular models with anatomically-relevant properties. VC-A30 can be formed into highly accurate models with specific mechanical properties using the latest 3D-printing techniques. These new vessel analogs may simulate patient-specific disease states, improve surgical training models, accelerate the development of new endovascular devices, and ultimately reduce dependencies on animal models.

Disclosures K. Lewis: None. J. Vigil: None. N. Norris: None. W. Merritt: None. T. Becker: 1; C; NIH grant #5R42NS097069-03.

Electronic poster abstracts

E-001 ENDOVASCULAR MANAGEMENT OF TRAUMATIC INTRACRANIAL ANEURYSMS FROM CLOSED HEAD INJURY

1 A White*, 2 C Roark, 3 D Case, 2 Z Folzenlogen, 2 D Kumpf, 2 D Ding, 1 J Seinfeld. 1 Radiology; UT Southwestern Medical Center, Dallas, TX; 2 Neurosurgery, University of Colorado, Aurora, CO; 3 Radiology, University of Colorado, Aurora, CO; 2Neurosurgery, University of Louisville, Louisville, KY.

Introduction/Purpose Traumatic intracranial aneurysms (TICAs) comprise a rare and particularly dangerous subset of cerebral aneurysms that can be difficult to both diagnose and manage, owing to their locations, morphologies, and presence of concomitant traumatic brain injury (TBI).

Materials and Methods We retrospectively reviewed internal databases comprised of intracranial aneurysms treated at two U.S. academic medical centers from 2010 to 2019. Patients with aneurysms of the intracranial circulation as a result of blunt force trauma treated with endovascular methods were included. All patients underwent initial non-contrast head CT, non-invasive vascular imaging, and diagnostic cerebral angiography. Clinical and radiographic data were recorded.

Results Between January 2010 and December 2019, a total of 8 patients with traumatic intracranial aneurysms treated with endovascular methods were included. Patients were aged 9-62 years (mean 35.5) and most were male (n=5). Five of 8 patients (62%) experienced acute intracranial hemorrhage due to aneurysm rupture. All patients but one were found to have an associated fracture on initial CT, including the ipsilateral petrous bone (n=4), anterior clinoid process (n=1), posterior clinoid (n=2), sphenoid body (n=6), clivus (n=2), and carotid canal (n=3), while 6 of 8 patients were noted to have sphenoid hemispheric regist on initial imaging. The most frequently involved vessel was the internal carotid artery (ICA; n=6), including 2 cavernous segments, 2 supraclinoid segments, 1 ophthalmic segment, and 1 communicating segment. The other vessels involved include the anterior cerebral artery (pericallosal; n=1) and the posterior inferior cerebellar artery (pons-medullary segment; n=1). Aneurysms sizes ranged from 2.8 mm (mean, 4.4 mm). Three of 8 aneurysms were treated with flow diversion (FD), one of which had aneurysm coil embolization, while 3 aneurysms were treated with balloon-assisted coiling (BAC). The 2 non-ICA aneurysms were treated with parent vessel sacrifice (PVS), one with liquid embolics and coil embolization, the other with coil embolization alone. Complete angiographic cure was achieved in 5 of 8 patients. Three aneurysm recurrences were found on follow-up imaging, one of which presented as re-rupture, and all of which were retreated. Re-treatment modalities included FD alone, FD with aneurysm coil embolization, and direct coil embolization alone. Two of 3 treated recurrences were completely cured on angiographic follow-up, while one expired before sufficient time to judge treatment efficacy had passed. Despite technical success in the overwhelming majority of cases, half of the patients were discharged with a poor functional outcome (mRS 3-6).

Conclusion TICAs may form acutely or in a delayed manner following blunt force trauma and occur most frequently on the ICA owing to its proximity to the rigid bony and dural structures of the skull base. The presence of cranial fractures and sphenoid hemispheric warrants prompt intracranial vascular imaging, particularly in a TBI patient with acute neurological decline or new neurologic deficit. Endovascular management is effective, particularly FD, which has emerged as an attractive alternative to PVS in carefully selected patients. Outcomes tend to be poor despite technically successful endovascular treatment, and further investigations are needed to show which patients might benefit the most.

Disclosures A. White: None. C. Roark: None. D. Case: 2; C; Medtronic. Z. Folzenlogen: None. D. Kumpf: None. D. Ding: None. J. Seinfeld: 2; C; Medtronic.

E-002 IMPACT OF PROCEDURAL TECHNIQUES ON CLINICAL OUTCOMES IN TREATING LARGE VESSEL OCCLUSION WITH ENDOVASCULAR THERAPY IN THE ASSIST REGISTRY

1 R Gupta*, 2 R Rai, 3 D Liebeskind, 4 A Krajina, 5 M Psychogios, 6 T Krings, 7 W Yoon, 8 O Zaidat, 9 A Pur, 10 A Samaj, 11 M Möhlenbruch. 1 WMG Neurosurgery, Wellstar Health System, Marietta, GA; 2Department of Radiology, University Hospital Hradec Královo, Hradec Králové, CZECH Republic; 3Department of Radiology, University Hospital Basel, Basel, Switzerland; 4Department of Neuroradiology, University of Toronto, Toronto Western Hospital, Toronto, ON, Canada; 5Department of Neurosurgery, Chonnam National University Hospital, Gwangju, Korea, Republic of; 6Department of Radiology, Saint Vincent Mercy Medical Center, Toledo, OH; 7Department of Radiology, University of Massachusetts Medical Center, Worcester, MA; 8Department of Neurology, University of Texas Houston Medical Center, Houston, TX; 9Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany.

Introduction/Purpose Traumatic intracranial aneurysms as a result of blunt force trauma treated with endovascular approaches tend to be poor despite technical success. The ASSIST REGISTRY was designed to evaluate the impact of procedural techniques on clinical outcomes in treating large vessel occlusion with endovascular therapy.

Materials and Methods Patients were prospectively included if they presented with acute ischemic stroke due to large vessel occlusion at two U.S. academic medical centers. Treatment was performed with intra-arterial thrombectomy followed by adjunctive stenting. The primary endpoint was modified Rankin Scale (mRS) at 90 days. Secondary endpoints included rates of 90-day mortality, symptomatic intracranial hemorrhage (sICH), and functional independence (mRS 0-2).

Results A total of 100 patients were included in the study. The majority of patients were treated with the Penumbra System (n=77), followed by the Merci Retriever (n=23). The median NIH Stroke Scale was 18 (IQR 12-24). The median time from symptom onset to first medical contact was 150 minutes (IQR 80-240). The overall rate of 90-day mortality was 12% (n=12), and the rate of symptomatic intracranial hemorrhage was 5% (n=5). The rate of functional independence was 72% (n=72).

Discussion These results demonstrate the feasibility and safety of endovascular therapy for large vessel occlusion in the setting of traumatic intracranial aneurysms. The impact of procedural techniques on clinical outcomes was evaluated, and further investigations are needed to show which patients might benefit the most.

Disclosures None.

10.1136/neurintsurg-2021-SNIS.99
Introduction Different treatment strategies employed for endovascular thrombectomy (EVT) may impact successful reperfusion and functional outcome. The ASSIST Registry is a postmarket observational study for continued evaluation of new products per their intended use. The aim of the ASSIST registry is to collect real-world data to develop clinical evidence regarding the use of various techniques of EVT in large vessel occlusions (LVOs). Analysis include evaluating which strategies are associated with first pass reperfusion and better clinical outcomes.

Methods Prospective, global, consecutive enrollment registry (up to 1500 subjects) of acute ischemic stroke patients (AIS) with LVO treatment in anterior circulation treated with multiple interventional techniques [Stentriever + Balloon guide catheter (BGC); Stentriever + Aspiration ± BGC; Aspiration ± BGC] using Stryker Neurovascular devices for the first pass. Patients will be distributed in each arm with accommodations made for reducing heterogeneity by geographical and operator location. The data from ASSIST will be analyzed using a generalized linear mixed model which will employ a binary distribution and logit link function to predict mRS. The model will accommodate any categorical and continuous variables that are shown to be confounders by separate univariate analyses, will include a random effect for site, and a four-level variable denoting the technique type.

Results A total of 1198 patients have been enrolled to date across 48 global centers. Severity of disability (90-day mRS 0-2) and procedural outcome (eTICI 2c or greater on first pass as adjudicated by core lab) will be evaluated for each technique. Secondary clinical outcomes include NIHSS drop of ≥10 points from baseline or NIHSS score of 0 or 1. Safety outcomes include mortality, neurological deterioration, symptomatic intracerebral hemorrhage (ICH) and embolization to a new territory. Baseline, follow-up and angiographic outcomes will be core lab adjudicated.

Conclusion There is limited evidence demonstrating clinical benefit or impact on outcomes based on the treatment strategy being employed to treat LVO with EVT. The ASSIST Registry will collect global real-world benchmark data on a large AIS population using the most common techniques and most recently available devices. Study results will provide valuable information on the relative effectiveness of different EVT treatment techniques and aid in the identification of optimal treatment approaches.

Disclosures R. Gupta: 1; C; Stryker Neurovascular PI ASSIST Registry, Zoll PI RECLAIM II (No compensation), Cerenovous Steering Committee MEMBRANE study, Medtronic Steering Committee ELEVATE Study, Penumbra CEC MIND Trial, Vasalio PI CLEAR Study, Rapid Medical PI Tiger Study. A. Rai: 2; C; Stryker Neurovascular. D. Liebeschkind: 2; C; Cerenovous, Stryker, Genentech, Medtronic, Rapid Medical. A. Krijna: 2; C; Stryker Neurovascular. M. Psychogios: None. T. Krings: None. W. Yoon: None. O. Zaidat: 1; C; Penumbra, Stryker Neurovascular. 2; C; Stryker Neurovascular, Penumbra, Rapid Medical, Cerenovous, Medtronic. A. Puri: 2; C; Stryker Neurovascular, Medtronic. A. Sarraj: 1; C; Stryker Neurovascular. M. Möhlenbruch: 2; C; Stryker Neurovascular, Phenox, Codman, Medtronic, Microvention.

Objective The benefit of balloon guide catheters (BGCs) in mechanical thrombectomy (MT) remains unclear. We examined the effect of BGC on procedural, radiographic, and clinical outcomes.

Methods A systematic review was conducted using PubMed, Embase, and Scopus to identify studies comparing MT for acute ischemic stroke with and without the use of BGCs. Patient demographics, procedural metrics, and outcomes were abstracted. Three-month functional outcomes were based on the modified Rankin Score (mRS).

Results Of the 2,181 resultant articles identified by the systematic review, 9 met inclusion criteria, comprising 2292 BGC and 1868 non-BGC patients. At baseline, the BGC group had a higher incidence of atrial fibrillation (43.3% versus 36.2%, p<0.0001) and a lower National Institutes of Health Stroke Scale (NIHSS) score (15.8 versus 16.5, p=0.046). BGC use was associated with shorter groin-to-recanalization times (55.6 versus 73.7 minutes, p=0.003), improved TICI ≥2b reperfusion (83.8% versus 75.6%, p<0.0001), lower incidence of symptomatic intracerebral hemorrhage (sICH; 5% versus 7.7%, p=0.046), and lower mortality (16.4% versus 22.3%, p<0.0001). BGC use, however, was also associated with a higher number of passes (2 versus 1.3, p=0.0001). There was no difference in functional outcomes at 90 days.

Conclusion BGC use during MT for acute ischemic stroke is associated faster to groin-to-recanalization times, improved TICI ≥2b reperfusion, lower incidence of sICH, and lower mortality. These data demonstrate the promise of BGC use for MT and warrant further study.

Disclosures N. Shlobin: None. B. Jahromi: None. S. Ansari: None. M. Potts: None.

Introduction COVID-19 infection has been associated with an increased risk of thrombotic events, including cerebrovascular accidents, presumed to be secondary to a systemic hypercoagulable state. These events have been reported even in young patients, without other significant vascular risk factors. We present a different, atypical case of a large-vessel occlusion (LVO) acute ischemic stroke secondary to a focal vasculopathy in a young patient with COVID-19 infection, requiring mechanical thrombectomy and emergent intracranial stenting, and we also review available literature.