McDonough: None. A. Demchuk: None. B. Menon: None. N. Sakai: None. M. Chen: 2; C; Medtronic, Genentech, Stryker, Microvention, Cerenovus, Penumbra. J. Fichler: 1; C; Acandis, Medtronic, Microvention, Stryker. 2; C; Acandis, Codman, Cerenovus, Microvention, Medtronic, Penumbra, Phenox, Stryker. M. Goyal: 2; C; Medtronic, Microvention, Stryker, GE Healthcare, Mentice.

Disclosures R. Dossani: None. A. Monteiro: None. M. Waqas: None. J. Capuzzo: None. F. Almayman: None. A. Baig: None. H. Rai: None. K. Snyder: 2; C; Canon Medical Systems Corporation, Penumbra Inc., Medtronic, and Jacobs Institute; Co-Founder: Neurovascular Diagnostics, Inc. E. Levy: 2; C; Claret Medical, GLG Consulting, Guidepoint Global, Imperative Care, Medtronic, Rebound, StimMed. 4; C; NeXt-Gen Biologics, RAPID Medical, Claret Medical, Cognition Medical, Imperative Care (formerly the Stroke Project), Rebound Therapeutics, StimMed, Three Rivers Medical. A. Siddiqui: 2; C; Amnis Therapeutics, Boston Scientific, Canon Medical Systems USA Inc., Cerebrotech Medical Systems Inc., Cerenovus, Corindus Inc., Endostrome Medical Ltd., Imperative Care, Inc. Integra LifeSciences C. 4; C; Adona Medical, Inc Amnis Therapeutics, (Purchased by Boston Scientific October 2017), Blink TBI Inc., Buffalo Technology Partners Inc., Cerebrotech Medical Systems, Inc., Cognition Medical, Endo- strea. J. Davies: 1; C; National Center for Advancing Translational Sciences of the National Institutes of Health under award number KL2TR001413 to the University at Buffalo. 2; C; Medtronic; Honoraria: Neurotrauma Science, LLC. 4; C; Cerebrotech, RIST Neurovascular.

Abstracts

E-012 SHEATHLESS WALRUS TECHNIQUE FOR TRANSRADIAL MECHANICAL THROMBECTOMY: TECHNICAL DESCRIPTION AND INITIAL EXPERIENCE


10.1136/neurintsurg-2021-SNIS.108

Introduction The field of neurointervention is experiencing a paradigm shift towards a “radial first” practice, under the premise that transradial approach (TRA) has less post-procedural pain, early deambulation, lower complications related to the access-site and shorter hospital stays than transfemoral approach (TFA). However, recent evidence from our own institution demonstrated that the restricted range of mechanical thrombectomy devices that can be used through 6F sheath in TRA translates into an association with inferior outcomes when compared to TFA. Large-bore aspiration catheters and balloon-guide catheters (BGC) can only be used through 8F sheath and are essential to achieve a faster and successful recanalization within fewer passes. The Walrus device is a variable stiffness 8F BGC that accommodates the majority of the most used thrombectomy devices. We describe here a novel approach, the Sheathless Walrus Technique, which allows the insertion of an 8F BGC through the radial artery in carefully selected patients, bringing the full range of devices available and translating the effectiveness of TFA mechanical thrombectomy into the TRA. We also report the initial experience with this technique at our institution.

Methods We performed a retrospective chart review of consecutive patients who presented with acute ischemic stroke due to large vessel occlusion at our institution between December 2020 and April 2021. Patients who underwent mechanical thrombectomy via TRA with the Sheathless Walrus technique were included. Demographic information, clinical characteristics and procedural details were collected.

Results Nine patients were included. Median age was 77 years and 6 (66.7%) were male. Median time from onset of symptoms to wrist puncture was 241 minutes. Seven patients (77.8%) had mRS≤2 at baseline, and median NIHSS at admission was 12. Median radial artery diameter was 2.65mm. Combination of stent-retriever and large-bore aspiration catheter was used in 7 patients, while aspiration catheter alone was used in 2 patients. Two patients required 2 passes, while 7 patients achieved successful recanalization (mTICI 2b-3) within a single pass. There were no intra-procedural complications. None of the patients experienced an intracranial hemorrhage post-procedure.

Conclusions In this initial experience, the Sheathless Walrus technique was shown to be feasible and safe in carefully selected patients at our institution. The importance of this technique consists in bringing the full range of mechanical thrombectomy devices to the TRA.

E-013 IMAGE GUIDANCE AS TOOL FOR ARTERIOTOMY CLOSURE IN PATIENTS WITH DIFFICULT ANATOMY

L. Lin*, W. Wisseck, B. Dau, A. Pandey, J. Gemmete, N. Chaudhary. 1; C; Radiology, University of Michigan, Ann Arbor, MI; 2; C; Neurosurgery, University of Michigan, Ann Arbor, MI

10.1136/neurintsurg-2021-SNIS.109

Introduction The usage of closure devices such as MynxGrip and Angio-Seal VIP is generally not recommended in the setting of difficult anatomies such as arterial pathology at the site of access and thin body habitus where there is little room for the extravascular portion of the plug. We describe techniques using image guidance for closure device deployment in patients with such anatomy using example cases.

Materials and Methods For patients with arterial pathology at the site of access, fluoroscopic guidance is used to determine the safest location to deploy the intravascular balloon component of MynxGrip. Patient A is an elderly man with chronic aortic dissection which extends into the common femoral arteries (CFA) bilaterally. The sheath was navigated to the larger lumen of the chronic dissection under fluoroscopy with roadmap overlay prior to insertion of the MynxGrip device. The balloon is inflated under visualization with a 50:50 mixture of contrast and saline. The balloon was then retracted under continuous visualization and the extravascular sealant was deployed without issue. Patient B is an elderly man with atherosclerosis of the right CFA, under fluoroscopy with roadmap overlay, the sheath was retracted slightly to a relatively disease-free segment of the artery prior to insertion of the MynxGrip device. The balloon was again inflated under visualization with a 50:50 mixture of contrast and saline and retracted to the arteriotomy where the extravascular sealant was deployed. For patients with thin body habitus, use of hydro-dissection can temporarily modify anatomy by increasing the distance between skin and superficial arterial wall at the access site. Under real-time sonographic guidance, an angled 25-gauge needle was navigated into the subcutaneous tissues between the artery and skin, and Lidocaine and sterile saline