EP37 NON-INVASIVE FOLLOW-UP OF ANEURYSMS TREATED WITH WEB® – A FLOW MODEL ANALYSIS OF CTA- AND MRI-TECHNIQUES VERSUS DSA AS GOLD STANDARD WITH PARTIALLY OCCLUDED ANEURYSMS

G Klose, M Pravdívteva, J Madjdiyar, F Wodarg. Radiology and Neuroradiology, UKSH Campus Kiel, Kiel, Germany

Introduction Brain aneurysm treatment with the Woven Endo Bridge (WEB®) is widely accepted. For long term follow up a non-invasive imaging would be preferable to avoid potential risks from repetitive catheter angiography.

Aim of the Study To evaluate which non-invasive imaging modality correlates best with DSA.

Methods Four different realistic aneurysm models were designed and 3D printed and a WEB Device was implanted following the official sizing recommendations. Subsequently the devices were partially filled with silicone though a small borehole, intentionally leaving out a proportion of the devices volume. DSA images were made as reference, followed by MRI using T1-, T2- and TOF-sequences, as well as CT and Spectral CT scans. All images were blinded and reviewed by two experienced readers using the WEB Occlusion Scale (WOS).

Results In our model CT and Spectral CT Scans were all scored as WOS 0, resulting in 0% conformity with DSA. The readers agreed in 100% of the cases. Comparing MRI sequences with DSA consistent results were found in 9.4% of the cases. The readers scored concuring WOS in 68.8%.

Conclusions From our analysis the detection of small residual inflows into aneurysms treated with WEB Devices, using non-invasive MRI or CT techniques is very unreliable and can not replace DSA for follow up. This is probably not true for recurrences outside the devices.

Disclosure FW consults and proctors for Microvention. GK, MP and JM have no conflicts of interest.

Logistics

EP38* SINGLE CENTER EXPERIENCE UTILIZING A NOVEL AUGMENTED REALITY PLATFORM TO TELEPROCTOR A NEUROENDOVASCULAR FELLOW

1A Hassan, 1S Desai, 2A Georgiadis, 1W Tekle. 1Neuroscience, Valley Baptist Medical Center, Harlingen; 2McAllen Medical Center, McAllen, TX, USA

Introduction Remote tele-proctoring solutions are gaining traction in neuro-endovascular surgery, however evidence supporting its use in fellowship training is limited. We demonstrate a novel augmented reality tele-proctoring platform to enable a remote attending to guide a fellow through neuro-interventions.

Methods A consecutive series of neuro-endovascular cases were performed by a first-year neuro-endovascular fellow with remote guidance from an attending surgeon. The fellow and attending were connected using the Proximie platform, a cloud-based solution that enables users to capture and stream live video feeds from a clinical environment to a remote user. In this setting, two video streams were obtained directly from the AP and lateral cameras on the biplane. Videos were streamed live to the remote attending surgeon providing them situational awareness. The attending could provide immediate vocal feedback to the fellow over an intercom. The attending could also deploy Proximie’s augmented reality tools which were visible to the fellow in real-time on a laptop in the angiography suite.

Results A total of ten cases were performed on eight patients during the study period. 30% of participants were female and the median patient age was 63±18.6 yrs. Six interventions and four diagnostics were performed in the series. All cases were a technical success. No complications or deaths occurred.

Conclusions This study demonstrates successful use of an augmented reality tele-proctoring platform in a fellowship training paradigm.

REFERENCES


Disclosure Amer E Hassan is a consultant for Proximie. Sohum K Desai, Wendwossen G Tekle, and Alexandros L Georgiadis do not have any disclosures.

EP39* COLLATERAL DAMAGES OF COVID-19 ON THE HUNGARIAN ISCHEMIC STROKE CARE

1,2J-P P Böjti, 1G Szilágyi, 1B Dobó, 2R Stang, 1,2,3I Szikora, 1K Kis, 1A Komfeld, 1C Óváry, 1L-E Erőss, 1,2P Banczerowski, 1W Kuczynski, 1P Bercücs. 1National Institute of Mental Health, Neurology and Neurosurgery; 2Department of Neurology; 3János Szentpéteri Doctoral School of Neurosciences, Semmelweis University; 4Department of Neurology, Medical Centre, Hungarian Defence Forces; 5Department of Probability Theory and Statistics, Eötvös Loránd University; 6MTA-SE Neuropediology Research Group ELKH; 7Department of Neurosurgery, Semmelweis University, Budapest, Hungary; 8Medical University of Lodz, Lodz, Poland; 9E4Noore COVID-19 Task Force, European Academy of Neurology, Vienna, Austria

Introduction Although most of the stroke centers reported a remarkable decline in stroke care during the coronavirus disease 2019 (COVID-19) pandemic, data from Central Europe are limited.

Objectives We aimed to assess the impact of the ongoing pandemic on the Hungarian ischemic stroke (IS) care system.

Methods At a national level, we retrospectively accessed the number of IS admissions and reperfusion therapies, i.e., intravenous thrombolysis (IVT) and endovascular therapy (EVT), from 2 January 2017 to 31 December 2020 in Hungary. We used different statistics (means, medians, trends, relative rates, linear relationships) to analyze the impact of the COVID-19 outbreak on the number of IS admissions and reperfusion therapies.

Results Although the non-standardized number of IS admissions, IVTs and EVTs decreased only in some measure during the COVID-19 epidemic, the trend analysis demonstrated a significant disruption in the trends. The reduction’s dynamic and extent have differed for each variable, and the number of IS admissions decreased to a disproportionally larger extent than the number of IVTs and EVTs. In contrast to IVT, the number of IS admissions and EVTs showed a significant