Disclosure This series has emanated from research supported in part by a grant from Science Foundation Ireland (SFI) and the European Regional Development Fund (ERDF) under grant number 13/RC/2073-P2. It is the independent clinical practice of the authors. Cerenovus provided support for post hoc data collection and analysis.

Abstracts

EP45

BEYOND PROXIMAL LARGE VESSEL OCCLUSIONS: OUTCOME OF MECHANICAL THROMBECTOMY IN DISTAL VESSEL OCCLUSIONS IN THE EXCELLENT REGISTRY – INTERIM ANALYSIS

1OO Zaidat, 2RG Nogueira, 3AH Siddiqui, 4AJ Yoo, 5RA Hanel, 6W Hacke, 7T Jovin,

Neuroscience Department, Mercy St Vincent Medical Center, Toledo, OH; 2Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA; 3Department of Neurosurgery, SUNY Buffalo, Buffalo, NY; 4Neurointervention, Texas Stroke Institute, Plano, TX; 5Department of Neurosurgery, Baptist Stroke and Cerebrovascular Center, Jacksonville, Fl, USA; 6Department of Neurology, University of Heidelberg, Heidelberg, Germany; 7Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA; 8Department of Neurosurgery, University Medical Center Hamburg, Hamburg, GA, USA; 9Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; 10Department of Neurology, University of California Los Angeles, Los Angeles, CA; 11Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA; 12Senns-Murphy Neurologic and Spine Clinic, Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN; 13Division of Neurosurgery, Department of Surgery, University of Missouri-Columbia Medical School, Columbia, MO; 14Department of Radiology, Fort Sanders Regional Medical Center, Knoxville, TN; 15Department of Neurosurgical, Thomas Jefferson University Hospital, Philadelphia, PA, USA; 16Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium; 17Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY; 18Department of Neurology, Oregon Health and Sciences, Portland, OR, USA; 19Neurosurgery Department, Hadassah University Medical Center, Jerusalem, Israel; 20Institute of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; 21Department of Neurological Surgery Norton Neuroscience Institute, Norton Healthcare, Louisville, KY; 22Department of Neurology and Neurosurgery, Los Robles Hospital and Medical Center, Thousand Oaks, CA; 23Department of Radiology, Riverside Methodist Hospital, Columbus, OH; 24Department of Neurosurgery, Geisinger, Danville, PA; 25Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; 26Department of Interventional Neuroradiology, Centre Hospitalier Universitaire de Lille, Lille, France; 27Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY; 28Department of Radiology, University of Massachusetts, Worcester, MA; 29Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA; 30Department of Neurosurgery, University Medical Center Hamburg, Hamburg, Germany; 31Department of Neuroradiology, Karolinska University Hospital and Clinical Neuroscience Karolinska Institute, Stockholm, Sweden; 32Medical Imaging, AZ Groeninge, Kortrijk, Belgium.

Results 64/532 (12.0%) patients had MeVO, and 44/532 (8.3%) had DiVO (37 M2, 4 P2, 1 A2, 1 P1, 1 M3). Final mTICI-2B was 87.1% (54/62) in MeVO vs 84.1% (37/44) in DiVO. First Pass (FP) mTICI-2c was 17.5% (11/63) in MeVO vs 6.8% (3/44) in DiVO; while the two groups had nearly identical FP-mTICI (20.6% vs 20.5%). 90-day mRS 0–2 or equal to pre-stroke was achieved in 55.4% (31/56) MeVO and in 45.9% (17/37) DiVO patients. All-cause 90-day mortality was 22.4% (13/58) in MeVO and 21.4% (9/42) in DiVO. The rate of any ICH was 50.8% (31/61) in MeVO vs 37.5% (15/40) in DiVO, while subarachnoid hemorrhage was 27.9% (17/61) and 22.5% (9/40) in MeVO and DiVO, respectively.

Conclusions In this interim analysis, patients with DiVO presenting with acute ischemic stroke and undergoing MT had rates of revascularization and clinical and safety outcomes comparable to MeVO. If confirmed in the full dataset, these findings can inform MT case selection.

Disclosure EXCELLENT is sponsored by Cerenovus. Dr. Zaidat serves as a consultant for Neuravi, Stryker, Penumbra, and Medtronic.

EP46

FIRST PASS EFFECT AND ASSOCIATED CLOT CHARACTERISTICS IN THE EXCELLENT REGISTRY – INTERIM ANALYSIS

Neurology and Neurosurgery, Los Robles Hospital and Medical Center, Thousand Oaks, CA; 3Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN; 4Neurointervention, Texas Stroke Institute, Plano, TX; 5Department of Neurosurgery, Baptist Stroke and Cerebrovascular Center, Jacksonville, Fl; 6Department of Neurosurgery, Mercy St Vincent Medical Center, Toledo, OH, USA; 7Department of Neurology, University of Heidelberg, Heidelberg, Germany; 8Department of Neurology, University Medical Center Hamburg, Hamburg, Germany; 9Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; 10Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA; 11Marcus Stroke and Neuroscience Center, Grady Memorial Hospital, Atlanta, GA; 12Senns-Murphy Neurologic and Spine Clinic, Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN; 13Division of Neurosurgery, Department of Surgery, University of Missouri-Columbia Medical School, Columbia, MO; 14Department of Radiology, Fort Sanders Regional Medical Center, Knoxville, TN; 15Department of Neurosurgical, Thomas Jefferson University Hospital, Philadelphia, PA, USA; 16Department of Medical Imaging, AZ Groeninge, Kortrijk, Belgium; 17Department of Neurosurgery, University at Buffalo, State University of New York, Buffalo, NY; 18Department of Neurology, Oregon Health and Sciences, Portland, OR, USA; 19Neurosurgery Department, Hadassah University Medical Center, Jerusalem, Israel; 20Institute of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; 21Department of Neurological Surgery Norton Neuroscience Institute, Norton Healthcare, Louisville, KY; 22Department of Neurology and Neurosurgery, Los Robles Hospital and Medical Center, Thousand Oaks, CA; 23Department of Radiology, Riverside Methodist Hospital, Columbus, OH; 24Department of Neurosurgery, Geisinger, Danville, PA; 25Cerebrovascular Center, Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; 26Department of Interventional Neuroradiology, Centre Hospitalier Universitaire de Lille, Lille, France; 27Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY; 28Department of Radiology, University of Massachusetts, Worcester, MA; 29Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA; 30Department of Neurosurgery, University Medical Center Hamburg, Hamburg, Germany; 31Department of Neuroradiology, Karolinska University Hospital and Clinical Neuroscience Karolinska Institute, Stockholm, Sweden; 32Medical Imaging, AZ Groeninge, Kortrijk, Belgium.

Introduction EXCELLENT (NCT03685578) is a prospective, single-arm, multicenter, real-world, international registry of mechanical thrombectomy (MT) with EmboTrap as first-line device. There is increasing interest in applying MT to acute distal vessel occlusion (DiVO), with limited data. This interim analysis evaluates the angiographic, clinical and safety outcomes in DiVO.

Aim of the Study To compare MT outcomes in Medium Vessel occlusion (MeVO) vs DiVO.

Methods MeVO was defined as proximal M2 and DiVO as distal M2, M3, P1, P2, and A2 occlusions. Independent core lab adjudicated occlusion location, reperfusion, and intracranial hemorrhage (ICH). 90-day mRS was completed by independent site investigators blinded to procedural data.

10.1136/neurintsurg-2021-ESMINT.44

10.1136/neurintsurg-2021-ESMINT.45
Introduction EXCELLENT (NCT03685578) is a prospective, single-arm, multicenter, real-world international registry of mechanical thrombectomy (MT) for stroke with the EmboTrap device as first line treatment. The study entails thrombus analysis of specimens collected with each MT pass.

Aim of the Study To compare rates of mRS 0–2 at 90 days and clot characteristics in subjects with and without first pass effect (FPE).

Methods FPE was defined as mTICI 2c/3 after one pass and non-FPE as mTICI 2c/3 after >1 pass as adjudicated by an independent core lab. Clot analysis was performed by independent central labs blinded to clinical data. mRS at 90 days was scored by investigators blinded to procedural data.

Results Overall mTICI2c/3 rates were 63.7% (326/512), FPE was achieved in 37.1% (190/512) and non-FPE in 26.6% (136/512) subjects. 90 day mRS 0–2 or equal to pre-stroke was achieved in 47.2% (75/159) with FPE and in 42.1% (51/121) non-FPE patients. All-cause 90-day mortality was 19.1% (34/178) in subjects with FPE and 26.4% (34/129) in subjects non-FPE. Major thrombus components (mean% ±SD) (34/178) in subjects with FPE and 26.4% (34/129) in subjects non-FPE as mTICI 2c/3 after >1 pass as adjudicated by an independent core lab. Clot analysis was performed by independent central labs blinded to clinical data. mRS at 90 days was scored by investigators blinded to procedural data. Results Overall mTICI2c/3 rates were 63.7% (326/512), FPE was achieved in 37.1% (190/512) and non-FPE in 26.6% (136/512) subjects. 90 day mRS 0–2 or equal to pre-stroke was achieved in 47.2% (75/159) with FPE and in 42.1% (51/121) non-FPE patients. All-cause 90-day mortality was 19.1% (34/178) in subjects with FPE and 26.4% (34/129) in subjects non-FPE as mTICI 2c/3 after >1 pass as adjudicated by an independent core lab. Clot analysis was performed by independent central labs blinded to clinical data. mRS at 90 days was scored by investigators blinded to procedural data.

Conclusions The high rate of ‘real-world’ FPE observed in EXCELLENT was associated with improved clinical outcomes. Clots retrieved with FPE had higher RBC and lower fibrin content compared to non FPE and to first pass mTICI <2c/3 e. These preliminary findings await confirmation from analysis of the full dataset.

Disclosure Seán Fitzgerald received research funding from Enterprise Ireland that is co-funded by Perfuze Ltd. Liam Mullins declares the following competing interest; Perfuze (stock options). John Thornton does not compete financial interests; Perfuze (Physician Advisory Board, stock options); Consultancy fees: Microvention, Johnson and Johnson.

Background Distal vessel occlusions represent about 25–40% of acute ischemic stroke (AIS), either as primary occlusion or secondary occlusion complicating mechanical thrombectomy (MT) for large vessel occlusion.

Objective Our aim was to evaluate safety and effectiveness of MT associated with the best medical treatment (BMT) in the

Disclosure Seán Fitzgerald received research funding from Enterprise Ireland that is co-funded by Perfuze Ltd. Liam Mullins declares the following competing interest; Perfuze (stock options). John Thornton does not compete financial interests; Perfuze (Physician Advisory Board, stock options); Consultancy fees: Microvention, Johnson and Johnson.

Background Distal vessel occlusions represent about 25–40% of acute ischemic stroke (AIS), either as primary occlusion or secondary occlusion complicating mechanical thrombectomy (MT) for large vessel occlusion.

Objective Our aim was to evaluate safety and effectiveness of MT associated with the best medical treatment (BMT) in the