E-157 EMERGENT INTRACRANIAL STENTING FOR SYMPTOMATIC BASILAR ARTERY AND INTRADURAL VERTEBRAL ARTERY STENOSIS

A Kuhn, J Singh, F Massari, A Puri. Division of Neuroradiology, Department of Radiology and New England Center for Stroke, University of Massachusetts, Worcester, MA

Introduction/Purpose To evaluate the feasibility and safety of basilar artery stenting in patients with symptomatic basilar artery or intradural vertebral artery stenosis in the setting of acute stroke intervention.

Material and Methods Review of our neuroradiological database and identification of all patients who underwent emergent intracranial stenting of the basilar artery or intradural vertebral artery, either as the first line treatment for emergent stroke intervention or as rescue treatment after mechanical thrombectomy between July 2017 and November 2021. Patient characteristics and outcomes, procedural and imaging follow up information was collected.

Results A total of 14 patients (9 males) with mean age of 67 years (range 44 to 89 years) were identified. Median mRS at baseline was 0 (range 0 to 3). Patients’ NIHSS at presentation ranged from 1–24 with mean NIHSS of 7. Seven patients underwent mechanical thrombectomy using a combination of stent-retriever and aspiration immediately prior to stent placement. Passes performed ranged from 1 to 4 with TICI 2c and 3 achieved in 5 cases, TICI 2b in 1 case and TICI 2a in another case. Two patients received intra-arterial tPA. Vessel stenosis in all cases ranged from 50 to 99%. After the stenting procedure TICI 3 was seen in 12 cases, TICI 2b and 2a in one case each. Neuroform EZ and Onyx Resolute were the most used stents. Eight patients were initiated on intravenous antiplatelet medication (either integrilin or cangrelor) after stent placement. One patient was loaded with aspirin post stenting procedure and 5 patients were already on dual antiplatelet medication prior to presentation. Three procedure related complications were seen with 2 subarachnoid hemorrhages due to vessel injury and one in-stent thrombosis withing 24 hours. Two of these patients unfortunately passed away. Another patient expired due to poor neurological status (NIHSS 24 at presentation). One more patient expired after discharge due to a cardiac arrest. At 3 months, follow up was available for 7 patients (50%). Four patients had died, 1 patient was lost to follow up and 2 patients did not yet reach the time point for clinical/imaging follow-up. For the 7 patients available, mRS at 3-months was 0–2 in all cases. Follow up imaging was available between 3 and 18 months (either CT angiogram or conventional angiogram) and showed patent stents in 6 cases. One patient showed complete occlusion of the stent without associated symptoms.

Conclusion Emergent intracranial stenting for symptomatic stenoses in the posterior circulation is feasible and safe when compared to the natural history of the disease.

Disclosures A. Kuhn: None. J. Singh: None. F. Massari: None. A. Puri: 1; C; NIH, Microvention, Cerenovus, Medtronic Neurovascular and Stryker Neurovascular. 2; C; Medtronic Neurovascular, Stryker NeurovascularBalt, Q’Apel Medical, Cerenovus, Microvention, Imperative Care, Agile, Merit, CereVasc and Arsenal Medical. 4; C; InNeuroCo, Agile, Perfuze, Galaxy and NTI.

E-158 TRENDS IN ELECTIVE TREATMENT STRATEGIES FOR BRAIN ANEURYSMS

1D Lauzier, 1S Cler, 1K Jayaraman, 2J Osbun, 2A Chatterjee, 3C Moran, 2A Kansagra. 1Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO; 2Mallinckrodt Institute of Radiology, Department of Neurological Surgery, Department of Neurology, Washington University School of Medicine, St. Louis, MO; 3Mallinckrodt Institute of Radiology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO.

Introduction Elective treatment of intracranial aneurysms comprises a large share of neuroradiological practice, with a proliferation of new devices contributing to the tremendous growth of this area. Traditionally, endovascular treatment of intracranial aneurysms was limited to coiling and coiling with