prospectively and retrospectively collected for retrospective review. Procedural data such as number of passes performed in the procedure, time to TICI 2B/3, time from symptom onset to operation time and recanalization time were calculated and summarized. Safety and efficacy outcomes were summarized with regards to mRS at 90 days post procedure, as well as approximate 24 hour NIHSS and 24 hour ASPECTS Score.

Results In total, data on 229 patients was collected. Patients with M2 segment occlusions exhibited an average 24 hour NIHSS of 11.33, 24 hour ASPECTS of 7.3, 90 day mRS of 3.2, and needed a mean 2.33 passes (sd 1.72). Patients with M3 segment occlusions exhibited an average 24 hour NIHSS of 11.79, 24 hour ASPECTS of 9.0, 90 day mRS of 3.75, and needed a mean 1.86 passes (sd 1.49). There was no significant difference in outcomes or characteristics based on laterality of stroke. Table 2 outlines summary outcomes statistics and complications.

Conclusion Neurointervention in distal MCA strokes may be effective. Further prospective, randomized studies in larger cohorts are necessary to compare the efficacy and safety of this technique to other medical treatments of distal MCA strokes.

Disclosures N. Siddiqui: None. R. De Leacy: None.

E-160

DETAILED EVALUATION OF BRAIN CONE-BEAM CT IMAGING ARTIFACTS: A PROSPECTIVE STROKE SERIES

Background Cone-beam computed tomography (CB-CT) imaging of the head can be acquired in the angiography suite to support various neurovascular procedures. Sole reliance on this imaging, however, still lacks full diagnostic confidence for stroke assessment due to various imaging artifacts that persist, even with the latest CB-CT technology.

Purpose The purpose of this study was to perform a detailed evaluation of image artifacts present on our series of advanced head CB-CT scans and evaluate improvements using a new CB-CT protocol which implements a novel dual-axis ‘butterfly’ trajectory.

Methods We included 94 scans from 47 patients who received CB-CT imaging for ischemic or hemorrhagic assessment during a neurovascular procedure. Both a single-axis ‘circular’ and novel dual-axis ‘butterfly’ protocol were performed on each patient as an intra-patient control. Each brain scan was divided into six regions and scored out of 3 based on six imaging artifacts originating from various physics- and patient-based sources (Figure 1).

Results Overall, the dual-axis trajectory produces CB-CT images with significantly less image artifacts than the advanced circular scan (whole brain average artifact score, AS: 0.20 vs. 0.33). Greatest improvements were seen for bone beam hardening (AS: 0.13 vs. 0.78) and cone-beam artifacts (AS: 0.04 vs. 0.55).

Conclusions Recent developments in CB-CT imaging protocols have significantly improved image artifacts, which has improved diagnostic confidence for stroke and support a direct-to-angiosuite transfer approach for acute ischemic stroke patients.

Disclosures N. Cancelliere: None. E. Hummel: 5; C; Philips. P. van Nijnatten: 5; C; Philips. P. Nicholson: None. M. van Vlimmeren: 5; C; Philips. B. Hallacoglu: 5; C; Philips. V. Mendes Pereira: 1; C; Philips.

E-161

OPTIMAL PARAMETER FOR PREDICTING FINAL INFARCT VOLUME AND OUTCOME AFTER COMPLETE RECANALIZATION OF MEDIUM VESSEL STROKE

A Guenego, B Lubicz. Erasme Hospital, Brussels, BELGIUM

Background and Purpose We sought to assess the optimal parameter and best threshold on baseline computed-tomography-perfusion (CTP) to predict final-infarct-volume, infarct progression and clinical outcome after successful endovascular recanalization of acute ischemic stroke (AIS) with primary distal, medium vessel occlusions (DMVO).

Methods We performed a retrospective analysis of consecutive AIS patients who underwent an initial CTP, were successfully recanalized by thrombectomy for DMVO and underwent a follow-up MRI. We evaluated the correlation of baseline infarct and TMax volumes with final-infarct-volume and infarct progression between CTP and follow-up MRI, as well as 3 months good clinical outcome (modified Rankin Scale score of 0 to 2).

Results Between January 2018 and January 2021, 38 patients were included in this analysis. Median final-infarct-volume and infarct progression were respectively, 8.4 mL [IQR: 5.2–44.4] and 7.2