Abstract E-262 Figure 3

provided important information and assisted in treatment planning.

Results In 5 presented cases, including two acutely ruptured brain arteriovenous malformation (AVM), small superficial brainstem AVM after radiosurgery, thalamic micro-aneurysm, spine AVM, fusion was crucial for diagnosis and influenced further therapy.

Conclusion Fusion of 3DRA and cross-sectional imaging may provide a deeper understanding of neurovascular disease. This seems crucial for planning, providing and most importantly minimizing complication rates of our therapy.


E-264 NOVEL USE OF THE COMANECI DEVICE TO ENHANCE FLOW DIVERTER WALL APPOSITION: EXPERIENCE WITH 26 CONSECUTIVE CASES

1U Campos, 2D Zarin, 3B Meyer, 4K Golshani, 5N Beatty, 6M Bender, 7G Colby, 8A Coon, 9L Lin. 1Department of Neurological Surgery, University of California, Irvine, Orange, CA; 2School of Medicine, University of California, Los Angeles, Los Angeles, CA; 3Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Tucson, AZ; 4Tallahassee Memorial Hospital, Florida State University, Tallahassee, FL; 5Department of Neurosurgery, University of Rochester, Rochester, Rochester, NY; 6Department of Neurosurgical Surgery, University of California, Los Angeles, Los Angeles, CA; 7St. Joseph’s Hospital, Carondelet Neurological Institute, Tucson, AZ

Background The Comaneci device (Rapid Medical, Yokneam, Israel) is an FDA approved (2019) retrievable stent device to assist in coil embolization. The use of the Comaneci device allows for the benefits of balloon-remodeling coil embolization without limiting antegrade blood flow. Here we describe a unique application of the Comaneci device to improve flow diversion stent wall opposition.

Methods We retrospectively reviewed a prospectively maintained IRB-approved institutional database of aneurysms treated with flow diversion (FD) to identify cases where a Comaneci device was utilized. We evaluated patient demographics, aneurysm type, procedural details including embolization device used, and periprocedural events and complications. Technical success was defined as successful FD implantation and adjunctive use of the Comaneci device without additional balloon angioplasty.

Results Surpass FD embolization with adjunctive Comaneci angioplasty was performed in 26 aneurysm cases over a 12-month period (December 2020 to 2021). Mean patient age was 70 +/- 9 years. Dual antiplatelet regimen consisted of aspirin 81 mg and either clopidogrel 75 mg or ticagrelor (60 or 90 mg BID) daily dosing, with an average pre-operative P2Y12 PRU of 27 +/- 39. Eighty-five percent (n=22) were located in the anterior circulation. Aneurysms treated included 13 (45%) internal carotid artery, 3 (10%) middle cerebral artery, 6 (21%) anterior cerebral artery, 1 (3%) vertebral artery, 3 (10%) basilar artery aneurysms. FD implantation was successful in all (100%) cases. The technique of Comaneci device deployment and retrieval was successfully carried out in all (100%) cases without the need for traditional balloon angioplasty.

Conclusion This series demonstrates the feasibility and safety of the Comaneci device as an adjunctive tool to improve vessel wall apposition during FD aneurysm embolization. This