The overall rate of hemorrhagic complications was 36.3% in the triple therapy and 9.1% in the DAPT group (P=0.316). The rate of moderate to severe disability (mRS ≥3) at last follow-up was 27.3% in the triple therapy group and 75% in the DAPT, respectively (P=0.039). Complete occlusion was achieved in 27.3% and 50% of the triple therapy and the DAPT groups, respectively (P=0.387).

Conclusions Patients with dolichoectatic VBFAs treated with flow-diversion and kept under triple therapy had less ischemic strokes, less progression of symptoms and overall better outcomes at last follow-up than similar patients kept under DAPT.

Disclosures A. Siddiqui: 2; C; Amnis Therapeutics, Apellis Pharmaceuticals, Inc., Boston Scientific, Canon Medical Systems USA, Inc., Cardinal Health 200, LLC, Cerebrotech Medical Systems, Inc., Cerenovus, Cerevatech Medical, Inc., 4; C; Adona Medical, Inc, Amnis Therapeutics, Bend IT Technologies, Ltd., BlinkTBI, Inc, Buffalo Technology Partners, Inc., Cardinal Consultants, LLC, Cerebrotech Medical Systems, Inc, Cerevatech Medical, A. Monteiro: None. R. Hanel: None. P. Kan: None. A. Mohanty: None. G. Cortez: None. M. Rabinovich: None. C. Matouk: None. N. Sujijantarat: None. K. Ebersole: None. L. Fry: None. S. Natarajan: None. B. Owusu-Adjei: None. S. Ortega-Gutierrez: None. J. Vivanco-Suarez: None. A. Wahlko: None. E. Levy: 2; C; Claret Medical, GLG Consulting, Guidepoint Global, Imperial Care, Medtronic, Rebound, Stimimed, Missionix, Mostac, Clarion, IRRAS. 3; C; Medtronic. 4; C; NeXtGen Biologics, RAPID Medical, Claret Medical, Cognition Medical, Imperative Care, Rebound Therapeutics, StimMed, Three Rivers Medical.

P-018 TREATMENT OF COMPLEX INTRACRANIAL ANEURYSMS USING NEW ROBOTIC-ASSISTED TECHNIQUES: FLOW DIVERTER AND INTRASACCULAR DEVICE EXPERIENCE

1V Mendes Pereira*, 1N Cancelliere, 2E Liu, 3T Marcotta, 1S Spears. 1Department of Neurosurgery and Medical Imaging, St. Michael’s Hospital, Toronto, ON, Canada; 2Department of Neurosurgery, St. Michael’s Hospital, Toronto, ON, Canada; 3Department of Medical Imaging, St. Michael’s Hospital, Toronto, ON, Canada

Abstracts


A59

Background Robotic stent-assisted coiling has been shown to be a safe and effective treatment for intracranial aneurysms.

Purpose We aim to describe our case series of robotic-assisted aneurysm embolizations treated using flow diversion and intrasaccular devices.

Results The endovascular robotic neuro-system (Corpath GRX, Siemens Healthineers) can be used to successfully treat various complex intracranial aneurysms in various anatomical locations using flow diversion and intrasaccular devices. Perioperative VasoCT imaging was used to confirm good device placement, including good proximal and distal stent opening, apposition along the parent artery and across the aneurysm neck for flow divertor cases and good aneurysm neck coverage with preservation of distal vessels for intrasaccular device treatments. All clinical procedures were technically successful, with all intracranial steps being performed robotically with no conversions to manual intervention or failures of the robotic system.

Conclusions Treatment of intracranial aneurysms using robotic-assisted flow diversion and intrasaccular devices is technically achievable and effective.