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ABSTRACT
Triage describes the assignment of resources based on 
where they can be best used, are most needed, or are 
most likely to achieve success. Triage is of particular 
importance in time-critical conditions such as acute 
ischemic stroke. In this setting, one of the goals of triage 
is to minimize the delay to endovascular thrombectomy 
(EVT), without delaying intravenous thrombolysis or 
other time-critical treatments including patients who 
cannot benefit from EVT. EVT triage is highly context-
specific, and depends on availability of financial 
resources, staff resources, local infrastructure, and 
geography. Furthermore, the EVT triage landscape is 
constantly changing, as EVT indications evolve and new 
neuroimaging methods, EVT technologies, and adjunctive 
medical treatments are developed and refined. This 
review provides an overview of recent developments 
in EVT triage at both the pre-hospital and in-hospital 
stages. We discuss pre-hospital large vessel occlusion 
detection tools, transport paradigms, in-hospital 
workflows, acute stroke neuroimaging protocols, and 
angiography suite workflows. The most important factor 
in EVT triage, however, is teamwork. Irrespective of 
any new technology, EVT triage will only reach optimal 
performance if all team members, including paramedics, 
nurses, technologists, emergency physicians, neurologists, 
radiologists, neurosurgeons, and anesthesiologists, 
are involved and engaged. Thus, building sustainable 
relationships through continuous efforts and hands-on 
training forms an integral part in ensuring rapid and 
efficient EVT triage.

INTRODUCTION
In medicine, the term ‘triage’ describes the assign-
ment of resources based on where they can be 
best used, are most needed, or are most likely to 
achieve success.1 Rapid and accurate patient triage 
and transport is of particular importance in time-
critical conditions such as acute ischemic stroke 
(AIS). The average AIS patient with a large vessel 
occlusion (LVO) loses 1.9 million neurons per 
minute,2 and every 30 min delay in recanalization 
decreases the chance of good functional outcome 
by approximately 10%.3 Although endovascular 
thrombectomy (EVT) constitutes a highly effec-
tive treatment for AIS, its benefit decreases rapidly 
as time to treatment increases.4 Thus, improving 
patient triage and transport is central to improving 
patient outcomes.

The goal of EVT triage is to direct AIS patients 
who can benefit from EVT to an EVT-capable 
hospital as fast as possible. While there are excel-
lent policy statements outlining general guiding 
principles for the establishment of stroke systems 
of care,5 6 there is likely no universal ‘right way’ 
of triaging patients for EVT, since EVT triage is 
highly context-specific, and depends on the local 
infrastructure and geography (eg, widespread rural 
geography with low hospital density vs urban area 
with high hospital density).7 Furthermore, although 
financial and staff resources should ideally not 
influence EVT triage, in reality they often do. 
Regardless of the triage paradigm, optimization 
of its diagnostic accuracy and speed are central to 
successful performance.

In this review, we discuss key principles in eval-
uating and optimizing EVT triage and summa-
rize recent promising developments and novel 
technologies that have the potential to improve 
both triage accuracy and speed. We performed a 
scoping review on MEDLINE/PubMed and Ovid 
using the search terms ‘stroke’, ‘ischemic stroke’, 
‘cerebrovascular accident’, ‘mechanical throm-
bectomy’, ‘endovascular procedures’, ‘endovas-
cular surgery’, ‘pre-hospital’, ‘triage’, ‘emergency 
medical services’, ‘emergency health service’, 
and ‘neuroimaging’, with a focus on randomized 
trials and large, prospective cohort studies. After 
outlining general principles on how to measure 
EVT triage performance and the importance 
thereof, we review different strategies for detecting 
LVO candidates in the field, measures to optimize 
communication between pre- and in-hospital teams 
such as pre-notification tools, different stroke trans-
port paradigms and evidence behind them, and 
lastly strategies to optimize in-hospital workflows 
including stroke imaging paradigms.

PRE-HOSPITAL TRIAGE: DETECTING EVT 
CANDIDATES IN THE FIELD
After symptom onset, the initial call for help, and 
the arrival of the emergency medical services (EMS) 
on the scene, the EMS team assesses the patient. 
This assessment forms the basis for the triage deci-
sion and determines whether the patient is directed 
to the closest primary stroke center (PSC), capable 
of administering intravenous (IV) thrombolysis 
(figure 1). Several tools are available that can aid 
the EMS team in this decision, ranging from simple 
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clinical stroke severity scales to highly specialized mobile stroke 
units (table 1)

Clinical stroke severity scales
Clinical stroke severity scales such as Face-Arm-Speech-Time 
(FAST) or Rapid Arterial oCclusion Evaluation (RACE) are the 
simplest pre-hospital triage tools as they do not require any 
specialized equipment and entail no added cost to the system 
beyond basic training of personnel,8 while at the same time 
improving pre-hospital management and shortening EVT prepa-
ration times.9 While some pre-hospital stroke severity scales are 
dichotomous,10 most provide a score in the form of points rather 
than a binary (LVO yes/no) output, which is more complex than a 
dichotomous output but allows for different cut-off choices with 
varying sensitivity and specificity, which can be advantageous in 
settings in which one has to be optimized over the other. For 
a detailed overview of the performance metrics of the various 
stroke severity scales, we refer the reader to the pre-hospital 
triage of patients with suspected stroke (PRESTO) study,11 
in which scales detected LVO in the anterior circulation with 
acceptable accuracy. RACE, G-FAST (Gaze-Face-Arm-Speech-
Time) and CG-FAST (Conveniently-Grasped Field Assessment 
Stroke Triage) performed best, with an accuracy similar to 
clinician-assessed NIHSS (National Institutes of Health Stroke 
Scale).11 That being said, the performance of all pre-hospital 
scales varies substantially across the spectrum of deficit severity. 
They generally perform best at both ends of the severity spec-
trum, which is of limited value since, in these patients, para-
medics may often be able to make the diagnosis purely based on 
their clinical experience.7 In patients with intermediate symptom 
severity, where diagnostic uncertainty is greatest, performance 
of clinical symptom severity scales is poorest. In some situations, 
certain pre-hospital triage scales may even be misguiding and, in 
extreme cases, may sway an EMS team from the correct diag-
nosis.12 Furthermore, since they purely rely on symptom severity 
(having been derived from the NIHSS), clinical stroke severity 
scales will naturally fail to detect LVO strokes with mild symp-
toms, and their performance in medium vessel occlusion (MeVO) 

strokes is also limited. This is particularly noteworthy given that 
several ongoing trials aim to expand EVT indications to these 
two patient subgroups.13 14 Perhaps even more important than 
the performance of a particular stroke scale itself is the need 
for the local EMS personnel to be familiar with it and comfort-
able using it. Several apps that have been designed to aid EMS 
specifically with pre-hospital stroke severity assessment and risk 
stratification can help to facilitate this task.15

Mobile stroke units
Mobile stroke units (MSUs)—that is, ambulances that are 
equipped with CT (and often CT angiography) capabilities—
are arguably the most sophisticated and specialized pre-hospital 
triage tool. By ruling out intracranial hemorrhage using on-board 
non-contrast head CT, they allow for administration of IV throm-
bolysis in the field, and, if on-board, CT angiography (CTA) 
capabilities are available so LVOs and MeVOs can be diagnosed 
with high certainty, meaning EVT candidates are accurately 
identified and directed to the nearest EVT-capable hospital. The 
North American BEST-MSU and German B-PROUD trials have 
shown that the use of MSUs in pre-hospital stroke triage leads 
to improved functional outcomes.16 17 The main disadvantage 
of MSUs is their high cost. For example, in the USA one MSU 
had annual operating costs of approximately $1.2 million and 
initial set-up costs can range between $600 000 to $1 million.18 
However, some studies support their cost effectiveness, and 
these added costs may very well meet the willingness-to-pay 
threshold for certain healthcare systems.19–21 The usefulness 
of MSUs is also highly dependent on local geography and the 
distance between the MSU base, the patient location, and the 
hospital location. In a recent modeling study, MSU utilization 
was most beneficial when low dispatch thresholds were used and 
at a travel time to the MSU between 180–200 min.22 That being 
said, in the BEST-MSU trial, MSUs were shown to be benefi-
cial when travel times were shorter as well.17 Some regions may 
benefit from creative combinations of MSU and conventional 
ambulance resources to optimize pre-hospital triage and treat-
ment times.23 24

Emerging, alternative pre-hospital triage devices
Several smaller, portable pre-hospital triage devices are currently 
under development, including microwave-based, ultrasound-
based, and electroencephalography (EEG)-based tools (table 1). 
In theory, these would be more practical and affordable than 
MSUs, as they could be installed in regular ambulances. Need-
less to say, each of those tools has its own set of challenges. 
Performing transcranial Doppler sonography is often difficult 
due to an insufficient acoustic window,25 and EEG technologies 
may not be able to identify EVT candidates with mild clinical 
deficits, since the relative preservation of brain function in these 
patients may not lead to signal abnormalities that are conspic-
uous enough to be detected. Of note, none of these portable 
devices is used in clinical routine, yet they still have to prove 
their robustness, reliability, and usefulness in the clinical setting.

PRE-NOTIFICATION: BRIDGING THE GAP BETWEEN THE PRE-
HOSPITAL TEAM AND THE IN-HOSPITAL TEAM
Pre-notification of the in-hospital team, and particularly the 
angio team, for instance through a phone-call or an app, allows 
the in-hospital team to optimally prepare for patient arrival, for 
example, by preparing an EVT kit, clearing the angio suite, etc 
(figure 2). Pre-notification has been proven to reduce treatment 
delays, especially during off-hours, when the angio team is not 

Figure 1  Pre-hospital triage from symptom onset to the initial triage 
decision in a ground-bound transport scenario. After symptom onset 
and symptom discovery, the initial call for help is initiated, either by the 
patient themselves or a witness. Upon ambulance arrival, the emergency 
medical services (EMS) team assesses the patient and, in case of 
suspected acute ischemic stroke, makes a triage decision—that is, the 
team decides whether they will target the nearest primary stroke center 
(PSC) or the nearest comprehensive stroke center (CSC). Numerous 
triage tools can aid the EMS team in making this decision, and differ 
in their costs, availability, ease of use and diagnostic accuracy. *See 
table 1 for a detailed overview. EEG, electroencephalography; FAST, 
Face-Arms-Speech-Time; RACE, Rapid Arterial Occlusion Evaluation.
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in-house and has to travel to the hospital.26 This step is a crit-
ical component of integrated systems of stroke care, permitting 
a coordinated approach to transport and treatment of stroke 
patients; such integration was associated with a sustained decrease 
in in-hospital stroke mortality in Canada.27 However, a large 
North American registry study and a recent international survey 
suggest that pre-notification tools are only used in 60–70% of 
EVT-capable hospitals, with large regional variations,28 29 high-
lighting substantial potential for improvement. By using novel 
technologies such as natural language processing algorithms,30 it 
may soon be possible to fully automate pre-notification, thereby 
obviating the need for manual texting/calling, which may further 
facilitate adoption of pre-notification in clinical practice.

TRANSPORT PARADIGMS: BALANCING THE TIME TO IV 
THROMBOLYSIS VERSUS TIME TO EVT
One of the main goals of pre-hospital EVT triage, besides 
recognizing AIS, is to direct patients who are likely to be EVT 
candidates to an EVT and IV thrombolysis-capable hospital 
(comprehensive stroke center, CSC) to minimize time to EVT and 

prevent further infarct progression.31 At the same time, patients 
who are unlikely to be EVT candidates should be directed to the 
closest PSC, to minimize time to IV thrombolysis (ie, onset to 
needle time). With regard to IV thrombolysis at the CSC in EVT 
candidates, several recently published randomized controlled 
trials32–36 have investigated the question whether IV thrombol-
ysis could be forgone in EVT candidates presenting directly to 
the CSC; overall, the current evidence from these trials does 
not support withholding IV thrombolysis in these patients, 
although there are some subgroups in which the added benefit 
of IV thrombolysis should be further investigated. The only 
randomized controlled trial on the drip-and-ship versus moth-
ership transport question (Direct Transfer to an Endovascular 
Center Compared with Transfer to the Closest Stroke Center in 
Acute Stroke Patients With Suspected LVO—RACECAT) found 
no difference in outcomes between the two transport paradigms, 
although the very well-organized stroke transfer system in which 
the trial was conducted (with its short door-in-door-out times 
in the participating PSCs) may not be representative for PSCs 
in other jurisdictions.37 Besides these two traditional transport 

Table 1  Tools and technologies for the pre-hospital triage of acute ischemic stroke

Pre-hospital tool Potential indication Examples Advantages Disadvantages

Clinical prediction scales Identify patients who 
are likely to have large 
vessel occlusion based 
on clinical symptoms

Los Angeles Motor 
Scale (LAMS), Rapid 
Arterial oCclusion 
Evaluation (RACE) 
scale

	► Simple, fast, easy to use with brief 
training

	► Reasonably high specificity for LVO for 
instruments like LAMS/RACE

	► Overall limited sensitivity for LVO, risk of missing out 
many patients who stand to benefit from EVT

	► Stroke represents only a minority of EMS calls; 
continuous maintenance of training may be required

Mobile stroke units 
(MSU), on-board CT scan

Distinguish ischemic 
stroke from hemorrhagic 
stroke by ambulance-
based neuroimaging

Mostly in Germany 
and the USA

	► The only system that currently allows 
safe pre-hospital thrombolysis by 
definitively ruling out hemorrhage

	► Can detect LVO with on-board 
angiography90 91

	► Expensive investment in equipment and personnel 
(on-board CT tech and physician or similar provider 
for giving thrombolysis)

Transcranial Doppler 
ultrasonography (TCD)

Identifying LVO via high 
vessel velocities and 
emboli detection

Lucid Robotic System 	► Sensitivity 91% and specificity 85% 
for identifying LVO per conference 
presentation92

	► Cumbersome
	► Operator-dependent when not robotic
	► Some patients do not have an adequate bone 

window

Electroencephalography 
(EEG)

Identify major strokes by 
confirming substantial 
loss of neuronal activity 
ipsilaterally

AlphaStroke, 
BrainScope One

	► Amenable to rapid quantitative 
interpretation at point-of-care

	► Brainscope studied in traumatic 
brain injury with 92% sensitivity for 
abnormal CT93

	► Can have high background noise especially in an 
ambulance

	► Non-specific findings are common in various 
pathologies; Brainscope specificity 51% for abnormal 
CT in TBI93

Brain accelerometry Identifying LVO94 BrainPulse 	► Has been studied in vasospasm 
(81% sensitivity) and traumatic brain 
injury95

	► High background noise may interfere with detection 
of LVO signal

Microwaves Rule out hemorrhage EMTensor, EMvision, 
Strokefinder

	► Useful in ruling out large hemorrhagic 
strokes96

	► Cannot rule out small bleeds
	► Application limited by poor penetration of 

microwaves into brain

Near-infrared 
spectroscopy

Identifying severe stroke 
by visualizing brain 
tissue oxygenation

Infrascanner 2000 	► Can detect large ischemia, 
hemorrhage

	► Sensitivity of 88% and specificity 
of 91% for detecting hematomas 
>3.5 mL within 2.5 cm of the brain 
surface97

	► Limited field or depth of penetration

Radiofrequency pulses Potential to identify 
hemorrhage

Sense Diagnostics 	► Can detect ICH expansion (pre-clinical 
studies)98 99

	► Maturing technology, unclear application

Volumetric impedance 
phase-shift spectroscopy 
(VIPS)

Identify severe stroke by 
detecting small changes 
and asymmetries in 
electrical properties

Cerebrotech Visor 	► Wireless visor on the head
	► Sensitivity 93% and specificity 87% 

to identify severe stroke100 (broadly 
defined as LVO or NIHSS >6 or ICH 
>60 mL or large established stroke

	► Data have come from a derivation study to create the 
VIPS selection algorithm—validation is required in 
pre-hospital settings

	► Technology relies on sending/receiving radio waves 
which can be modified by implants like plates/screws 
or metallic hair extensions

EMS, emergency medical services; EVT, endovascular thrombectomy; ICH, intracerebral hemorrhage; LVO, large vessel occlusion ; NIHSS, National Institutes of Health Stroke Scale; 
TBI, traumatic brain injury.
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paradigms, several additional innovative transport paradigms 
have emerged over the last years.

As noted previously, MSUs allow for IV thrombolysis in the 
field, and, if equipped with CTA capabilities, for accurate identi-
fication of LVO stroke, which has been shown to improve func-
tional outcomes.16 17 Use of mobile interventional stroke teams, 
in which the angio team travels from the mothership to a smaller 
thrombectomy-capable hospital closer to the patient, are another 
promising alternative that has been shown to reduce workflow 
times and improve short-term neurological outcomes, with a 
trend towards better long-term functional outcomes.38

Since the local hospital landscape and transport resources as 
well as the efficacy of in-hospital teams are highly variable, the 
results of the aforementioned studies are unique to the envi-
ronment in which they were conducted and cannot necessarily 
be generalized to other jurisdictions. Each local environment 
must find their own optimal transport paradigm based on local 
workflow times and available resources. Conditional probability 
modeling allows systems to take local geography and workflow 
efficacy into account while simulating different transport para-
digms, and can aid in determining the best transport paradigm 
for a given environment or scenario.22 39

IN-HOSPITAL PHASE: STREAMLINING WORKFLOWS AND 
REDUCING THE COGNITIVE LOAD OF THE TEAM
The potential for time-savings in the in-hospital phase is 
substantial.29 As such, several concepts have been developed 

to streamline in-hospital workflows, to shorten the time from 
patient arrival to reperfusion as much as possible.

Rapid patient assessment and use of a ‘code stroke clock’
On patient arrival, only absolutely necessary procedures should 
be performed before EVT. In many hospitals, EVT candidates 
still undergo chest x-rays or Foley catheter insertion before EVT, 
which is largely unnecessary and time-consuming.29 The use of 
a ‘code stroke clock’—a clock that measures workflow times—is 
a simple and easy-to-implement measure that increases the time 
awareness of the in-hospital team, and thereby shortens work-
flow times40 41 (figures 2 and 3).

Eliminating unnecessary workflow steps in the in-hospital 
pre-EVT phase
Saving time in the in-hospital phase can often be achieved by 
simple measures, such as eliminating unnecessary workflow 
steps. In a survey study among 248 stroke physicians and neuro-
interventionalists, electrocardiograms were performed in 26% 
and even chest x rays were taken in 4% before EVT.29 By simply 
foregoing or postponing those procedures to the post-EVT 
time period, time could be saved. Taking the patient to the CT 
scanner on the EMS stretcher or administering IV thrombolysis 

Figure 2  Pre- and in-hospital triage from the time of emergency 
medical services (EMS) leaving the scene to arterial puncture in a direct-
to-mothership scenario. Once EMS leaves the scene, a pre-notification 
is sent to the comprehensive stroke center, so that the in-hospital 
team can get prepared before patient arrival (eg, during the night the 
angio team may have to travel to the hospital, the angio suite can be 
cleared in advance, etc). This helps to shorten in-hospital workflows. A 
code stroke clock keeps track of the overall in-hospital workflow time, 
serves as an internal quality control tool, and identifies potential time 
delays that can be avoided. Various imaging protocols can be used 
for treatment decision-making, ranging from simple protocols that 
include only non-contrast CT (NCCT) of the head and CT angiography 
(CTA) to more complex protocols that include CT perfusion imaging or 
MR imaging (MRI). While information content is greater in the latter, 
availability and speed are generally better in the former. In case of 
intravenous thrombolysis, either alteplase, which is administered as 
an infusion over 1 hour, or tenecteplase, which can be administered as 
a bolus, is given. In the angio suite, workflows can be streamlined by 
using pre-prepared endovascular thrombectomy (EVT) kits that shorten 
preparation time by avoiding assembling the required EVT materials. 
Simulation training and practice runs can improve workflows as well, 
especially in exceptional circumstances such as the COVID-19 pandemic, 
in which donning and doffing of personal protection equipment (PPE) 
and airway management add an additional layer of complexity to 
patient management in the angio suite.

Figure 3  Pre- and in-hospital triage from the time of emergency 
medical services (EMS) leaving the scene to arterial puncture in a 
drip-and-ship scenario. Once EMS leaves the scene, a pre-notification 
is sent to the primary stroke center (PSC), so that the in-hospital team 
can get prepared before patient arrival (eg, during the night, the stroke 
neurology attending on call may have to travel to the hospital). This 
helps to shorten in-hospital workflows. A code stroke clock keeps 
track of the overall in-hospital workflow time, serves as an internal 
quality control tool, and identifies potential time delays that can be 
avoided. Various imaging protocols can be used for treatment decision-
making, ranging from simple protocols that include only non-contrast 
CT (NCCT) of the head and CT angiography (CTA) to more complex 
protocols that include CT perfusion imaging or MR imaging (MRI). 
While information content is greater in the latter, availability and speed 
are generally better in the former. Especially in smaller PSCs with 
low case volumes, automated image interpretation could be of great 
help to guide less experienced readers through the imaging findings. 
In case of intravenous (IV) thrombolysis, either alteplase, which is 
administered as an infusion over 1 hour, or tenecteplase, which can be 
administered as a bolus, is given. The latter is more practical to handle 
and could substantially shorten door-in-door-out times in cases in which 
one wants to avoid transporting the patient in the ambulance with a 
running IV thrombolysis infusion. CSC, comprehensive stroke center.
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in the CT scanner suite after the non-contrast head CT are other 
simple but effective measures to improve workflow times.42

Direct-to-angio paradigms
In direct-to-angio workflows, the patient is transported directly 
to the angio suite for on-table imaging, rather than stopping by 
the CT/MR scanner for conventional cross-sectional imaging. 
A recent randomized controlled trial (Direct to Angiography 
Suite Without Stopping for CT Imaging for Patients With Acute 
Stroke—ANGIOCAT)43 suggested that direct-to-angio work-
flows may decrease in-hospital workflow times and improve 
clinical outcomes when using a direct-to-angio paradigm.43 
However, another randomized trial was stopped early because 
of substantial delays in time to imaging and subsequently time 
to IV thrombolysis, in the direct-to-angio arm.44 The benefit of 
direct-to-angio paradigms therefore still must be proven; they 
could constitute a promising alternative mainly for large centers 
with sufficient staff resources, an all-time available angio suite, 
and 24/7 in-house tech coverage.

Translational simulation training
Simulation team training is another simple but highly effective 
tool to improve the speed of patient assessment and concerted 
team-work.45 It has been widely adopted for health professional 
education and traditionally for procedural task training, commu-
nication and teamwork. Recently, in situ simulation has put the 
simulation into the clinical environment, facilitating transfer of 
knowledge and skills into real-world practice. As a relatively new 
concept, translational simulation allows for quality improve-
ment by linking simulation training to identify latent quality 
threats with health service priorities and patient outcomes.46 
This is particularly helpful when the team has to adapt to new 
situations and practice new workflow steps, such as donning and 
doffing personal protection equipment and disposal of contam-
inated material during ‘protected code stroke’ protocols during 
the COVID-19 pandemic.47 48

Acute stroke imaging protocols
The overarching goal in acute ischemic stroke imaging is to 
obtain the information that is needed for EVT decision-making 
as fast as possible, with minimal delays between image acqui-
sition and interventional team notification and treatment plan-
ning.49 No time should be lost by obtaining additional imaging 
that is not necessary to answer these questions. Most centers use 
CT-based imaging protocols due to the greater availability and 
affordability of CT compared with MRI, the relative absence of 
contraindications to CT in the acute stroke setting, and the faster 
image acquisition time with less sensitivity to motion.

At a bare minimum, non-contrast head CT is needed to rule 
out intracranial hemorrhage and roughly assess the extent of 
ischemic damage. CTA allows for visualization of an EVT target 
occlusion (LVO or MeVO) and visualizes the cervical vascula-
ture and aortic arch, which allows for appropriate choice of EVT 
devices. Multi-phase CTA has some benefits over conventional 
single-phase CTA, as it improves occlusion detection, particu-
larly for MeVOs, which are increasingly treated with EVT, and 
allows for a more accurate evaluation of collateral blood supply 
in the ischemic territory.50–52

Although for late time window patients (6–24 hours from last 
known well), current guidelines recommend using perfusion 
imaging for EVT patient selection; the increased accuracy of 
penumbra and core estimation with advanced imaging should be 
balanced against the additional time lost and the risk of ‘decision 

paralysis’ due to unnecessary and potentially confusing or even 
misleading information. More recent data from a British national 
registry study53 and the CLEAR study suggest that simpler 
imaging paradigms using non-contrast CT (NCCT) and single- 
or multiphase CTA may be equally capable of selecting patients 
for late time window EVT54–57 compared with CT perfusion.58

In transfer patients, the additional question arises whether 
imaging should be repeated at the CSC before EVT. In a recent 
single center study, repeat imaging was associated with a median 
time delay of 20 min and rarely changed the treatment deci-
sion, suggesting that repeat imaging should not be routinely 
performed.59

Automated image processing and analysis
Advanced visualization technologies and automation of image 
processing and analysis could be of particular value for stroke 
triage in smaller hospitals (eg, PSCs with limited neuroimaging 
experience), or hospitals in which trainees are the primary image 
readers off-hours. Examples for such (semi-)automated image 
analysis modules include automated hemorrhage detection,60 61 
ASPECTS (Alberta Stroke Program Early CT Score) scoring,62–65 
LVO detection,66 67 and generation of perfusion maps from 
multiphase CTA.68–70 These technologies could transform the 
acute stroke imaging workflow by (1) improving diagnostic 
accuracy (reduced risk of misdiagnosis), (2) timely ‘rescue’ of 
patients who have been missed in the earlier parts of the pre-
hospital workflow (eg, patients with atypical or mild symptoms 
for whom no code stroke was initiated), and (3) linking auto-
mated detection of stroke imaging findings with instant notifi-
cation of physicians and stroke teams, which could enable rapid 
concerted responses.

IV thrombolysis
So far, combined IV thrombolysis and EVT is the standard of 
care for AIS with EVT target occlusion. As mentioned before, 
the role of IV thrombolysis in EVT candidates in the direct-to-
mothership scenario has recently been questioned by several 
randomized controlled trials,32–36 and in summary they could 
not show benefit of a ‘dry’ direct-to-EVT paradigm. The use of 
IV tenecteplase, which can be administered as a bolus, instead 
of a continuous infusion required in alteplase, could potentially 
decrease in-hospital workflow times, particularly in drip-and-
ship settings, since the patient could be transported to the EVT-
capable hospital immediately after the tenecteplase bolus has 
been administered without a running infusion.

Angio suite preparation
Immediately after the in-hospital team has been informed about 
the arrival of a potential EVT candidate, the angio suite should 
be cleared and prepared for EVT. Although only used by approx-
imately one out of two stroke teams, pre-prepared stroke kits 
that contain the basic equipment needed for EVT can reduce 
preparation time in the angio suite and thereby decrease time 
to arterial puncture.29 71–73 The EVT procedure itself, including 
the equipment used, should be standardized as much as possible 
to reduce the cognitive load of the angio team, as this has been 
repeatedly shown to decrease time to reperfusion.72 73

Regarding the role of anesthesia, previous studies have shown 
conflicting results. While cohort studies suggest worse clinical 
outcomes when general anesthesia is used,74 75 single-center 
randomized trials suggest similar outcomes.76 77 In any case, 
suboptimal anesthesia workflow results in time delays.74 Thus, 
the anesthesia team should be included in the pre-notification 
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messages and, ideally, an anesthesiologist is available by default 
in the angio suite, particularly during the COVID-19 pandemic, 
in which intubation before EVT is often indicated in airway/
breathing-compromised COVID-19 patients.47

Besides the aforementioned factors, the choice of EVT access 
route, devices, and techniques also influences the time from arte-
rial puncture to reperfusion. As this article is focused on getting 
the right patient to the angio suite, a detailed review of EVT 
techniques is beyond its scope. However, irrespective of the 
particular technique used, simulation task training can improve 
operator skills and safety and thereby help to shorten the time 
from arterial puncture to reperfusion.45

MEASURING EVT TRIAGE PERFORMANCE
Commonly accepted triage accuracy measures include sensitivity 
(the probability of transporting a patient who can benefit from 
EVT directly to an EVT-capable center), specificity (the prob-
ability of not transporting a patient who cannot benefit from 
EVT to an EVT-capable center), and the positive and negative 
predictive value (the proportion of true positives and true nega-
tives among all positive and negative cases). Importantly, when 
considering sensitivity and specificity, one cannot be maximized 
without compromising on the other. In other words, increased 
sensitivity comes at the cost of decreased specificity and vice 
versa. As the goals of EVT triage are highly specific to the indi-
vidual situation, the decision regarding which metrics to prior-
itize will also depend on specific circumstances (figure  4). In 
some scenarios, the priority will be to maximize specificity—that 
is, only treating those patients who are most likely to benefit 
from EVT, even at the cost of potentially withholding treat-
ment from some patients who may be eligible. This might be 
the preferred strategy to gain traction for EVT adoption in a 
lower-resource environment such as a low- or middle-income 
country—the goal being to achieve success in a more highly-
selected population with the highest chances of treatment effect, 
before support is gained to allocate resources to broader popula-
tions. In other situations, for example, in high-income countries 
with sufficient available resources, one may choose to maximize 
sensitivity— ensuring all possible EVT-eligible patients are eval-
uated at EVT-capable hospitals/CSCs—at the cost of potentially 
evaluating some patients who are ultimately deemed ineligible 
for EVT. Irrespective of the circumstances, EVT triage accu-
racy is important, and effective triage should keep time delays 
to EVT as short as possible in any given scenario. The speed 
component of EVT triage performance can in theory easily be 

captured by measuring workflow times, with suggested bench-
mark times that have been published by the Society of Neuroin-
terventional Surgery’s standards and guidelines committee78 (see 
online supplemental table 1) and the American Heart Associ-
ation/American Stroke Association brain attack coalition.79 To 
reliably measure workflow performance, consistent and accurate 
definitions of EVT triage, transport time intervals, and workflow 
time intervals are however needed. Although several consensus 
and statement papers have been published on the topic and may 
provide guidance,80–85 no single universally accepted ‘minimum 
reporting standard’ for EVT workflows has yet emerged.

As a general principle, there is agreement that systems should 
aim to report broader, all-encompassing workflow times rather 
than fractionated time intervals to provide a more complete 
picture and avoid the potential for bias. Furthermore, time inter-
vals should use automatically captured time-points (eg, DICOM 
(digital imaging and communications in medicine) time stamps) 
rather than manual data entry to avoid additional work and 
human errors, and describe the distribution of workflow metrics 
in a comprehensive way, for example, by providing the mean 
and standard deviation.85 86 Of note, workflow performances 
are ideally assessed in large, multicenter registries such as the 
American Heart Association’s ‘Get with the Guidelines’ registry 
tool,87 with mechanisms that ensure all patients are included in 
the database, in order to avoid ‘cherry-picking’ and provide a 
realistic image of workflow performance over time.

CONCLUSION
The landscape of EVT triage is constantly changing, and several 
trials are ongoing that may soon broaden EVT indications. 
Furthermore, new neuroimaging methods, EVT technologies, 
and adjunctive medical treatments are undergoing continuous 
development and refinement. These changes will influence 
EVT triage. For example, IV tenecteplase may soon replace IV 
alteplase as the default thrombolytic agent, making PSC-CSC 
interhospital transfer easier. In case neuroprotectants such as 
nerinetide become standard of care,88 in-hospital workflows and 
organization will need to change to allow for timely adminis-
tration of these additional adjunctive treatments. Stroke legisla-
tion, either at a regional or national level, can catalyze and guide 
these efforts and improve overall accessibility to stroke care at 
the population level.89 Irrespective of these moving parts, team-
work is key to efficient EVT triage; thus, engaging paramedics 
and primary stroke centers is just as important as adoption of 
new triage technologies. Without their support, EVT triage 
paradigms will always lag behind the evidence and never achieve 
their maximum performance. Building sustainable relationships 
between the involved parties, and motivating and engaging all 
players, both at the pre- and in-hospital stage, will require contin-
uous efforts and ongoing education and training, which should 
ideally include regular hands-on simulation training workshops 
and in-person site visits at PSCs and EMS hubs. The optimiza-
tion of EVT triage is an active process requiring concerted efforts 
that cannot simply rely on passive flow of knowledge.
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