World Federation of Interventional and Therapeutic Neuroradiology (WFITN) Federation Assembly neurointerventional surgery safety checklist

ABSTRACT

Over the last 10 years, there has been a rise in neurointerventional case complexity, device variety and physician distractions. Even among experienced physicians, this trend challenges our memory and concentration, making it more difficult to remember safety principles and their implications. Checklists are regarded by some as a redundant exercise that wastes time, or as an attack on physician autonomy. However, given the increasing case and disease complexity along with the number of distractions, it is even more important now to have a compelling reminder of safety principles that preserve habits that are susceptible to being overlooked because they seem mundane. Most hospitals have mandated a pre-procedure neurointerventional time-out checklist, but often it ends up being done in a cursory fashion for the primary purpose of ‘checking off boxes’. There may be value in iterating the checklist to further emphasize safety and communication. The Federation Assembly of the World Federation of Interventional and Therapeutic Neuroradiology (WFITN) decided to construct a checklist for neurointerventional cases based on a review of the literature and insights from an expert panel.

INTRODUCTION

Safety risks to neurointerventional procedures are growing for many reasons. Over the last 10 years, there has been a rise in case complexity, device variety and physician distractions. All of these concerns can, even among experienced physicians, challenge our memory and concentration, making it more difficult to remember safety principles and their implications. The number of different neurointerventional devices and approaches now are considered to be within the scope of treatment possibilities. Distractions add to these risks. Often during the procedure, urgent and emergent consultations need to be managed which includes thinking about the case, scheduling and prioritization. Industry vendors may be present during the case who may be another source of distraction with their incentives and influence. The anesthesiologists, nurse anesthetists, radiology technologists, nurses, fellows and residents all caring for the patient often rotate with sometimes multiple hand-offs occurring during a single case. Sometimes the level of engagement and understanding among all these people is surprisingly low. One survey of 300 surgical staff members at a Massachusetts hospital revealed that one in eight of the staff members did not know where the incision would be until the operation started.1

Checklists have been regarded by some as a redundant exercise that wastes time, or as an attack on physician autonomy. However, given the increasing case and disease complexity along with the number of distractions, it is even more important now to have a compelling reminder of safety principles that preserve habits that are susceptible to being overlooked because they seem mundane. Checklists can also foster better communication and teamwork within the procedure room and between clinical disciplines.2 In 2009, the Safe Surgery Saves Lives team published in the New England Journal of Medicine a checklist that was used in eight sites around the world ranging from small district hospitals to large medical centers in diverse geographic settings. Checklist use reduced complications and mortality associated with a variety of surgical procedures by >30%.3

Checklists have received support from governing bodies such as the Interventional Radiological Society of Europe (CIRSE) and the Society of Interventional Radiology (SIR).4 5 Fargen et al’s 2013 publication remains the only
| Standards |

Table 1 Selected checklist elements for image-guided procedures

<table>
<thead>
<tr>
<th></th>
<th>CIRSE</th>
<th>Fargen</th>
<th>WHO</th>
<th>SIR</th>
<th>RADPASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialty</td>
<td>IR</td>
<td>NIR</td>
<td>Surgery</td>
<td>IR</td>
<td>IR</td>
</tr>
<tr>
<td>Number of elements</td>
<td>32</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td>27</td>
</tr>
<tr>
<td>Publication year</td>
<td>2012</td>
<td>2013</td>
<td>2009</td>
<td>2016</td>
<td>2013</td>
</tr>
</tbody>
</table>

Before anesthesia/’sign in’

- Discussed with referring physician: X
- Clarify indications for procedure: X
- Imaging studies reviewed: X, X, X, X
- Relevant medical history: X, X
- Confirm patient identity, procedure and consent: X, X, X, X
- Mark site: X, X
- Contrast-induced nephropathy prophylaxis: X, X
- Check labs: X, X

Check pulses

- Determine if anticoagulation needed: X
- Determine if arterial line needed: X
- Evaluate for contrast/anesthetic allergy: X, X, X, X
- Determine if difficult airway/aspiration risk: X
- Pregnancy status: X, X
- Correct patient name in computer: X
- Check equipment/anesthesia machine: X, X
- Devices available: X
- Post-interventional bed required: X
- IRMER requirements met: X, X
- Check risk factors for bleeding/renal failure: X, X
- Antibiotic prophylaxis given: X, X
- Venous thromboembolism prophylaxis: X
- Review critical/unexpected steps with team: X
- Determine type of anesthesia/sedation: X, X
- Type and screen: X
- Contraindications identified: X
- Medications for procedure available: X

Before vascular access/’time out’

- Introduction of all team member names and roles: X, X, X
- All records with patient: X
- Confirm patient NPO: X
- Confirm adequate IV access: X, X
- Confirm monitoring equipment attached: X, X
- Check equipment: X
- Confirm patient name/procedure/side: X, X, X
- Does patient have difficult airway: X
- Patient ASA grade: X
- Procedure summary: X
- Sheath size: X
- Initial catheter and size: X
- Number of pressure bags: X
- Planned devices: X
- Tortuosity concerns: X
- Pulses palpated: X

Continued
A recent systematic review of checklists for image-guided interventions provides an overview of commonly proposed checklist elements, effectiveness, and barriers to adoption. In this review, of 16 studies, the large majority described checklists for body/vascular interventional radiology with only one publication each for pediatric interventional radiology and neurointerventional radiology. Most did not report data measuring checklist effectiveness. This suggests that there is a need for further research to evaluate the impact of checklists on patient safety and outcomes in neurointerventional radiology.

LITERATURE REVIEW ON IMAGE-GUIDED INTERVENTIONAL PROCEDURE CHECKLISTS

A recent systematic review of checklists for image-guided interventions provides an overview of commonly proposed checklist elements, effectiveness, and barriers to adoption. In this review, of 16 studies, the large majority described checklists for body/vascular interventional radiology with only one publication each for pediatric interventional radiology and neurointerventional radiology. Most did not report data measuring checklist effectiveness.
The Joint Commission analyzed 2455 sentinel events and found the primary root cause in over 70% was communication failure.4 The checklist may serve to democratize the procedure by facilitating everyone in the room to be more accountable and communicative during the procedure.8 For example, communicating effectively. There were no randomized controlled trials or formal quality assessments. As a result, there was significant heterogeneity among studies.

Nevertheless, the majority of checklists had three domains, usually corresponding to (1) sign-in (before anesthesia induction), (2) time-out (before beginning the actual procedure) and (3) sign-out. The number of checklist items ranged from 4–40. Five were adapted from the WHO checklist and three adapted from the Universal Protocol. A compilation of five of the most often cited image-guided preprocedural checklists are shown in table 1 which show substantial heterogeneity in the elements included.

Whether checklist implementation actually reduces complication rates, avoids near-miss adverse events, identifies process issues or reduces process deviations is not well studied. The best outcome measures thus far consist only of surveys to assess attitudes of healthcare providers towards checklists. They have been generally perceived as important tools to improve teamwork, communication and patient safety.

However, many of the reviewed articles did describe barriers to checklist use. These included excessive checklist length, lack of leadership, and poor awareness of the importance of checklists. A busy practice focused on efficiency and throughput as well as lack of applicability of certain checklist elements have also been described as barriers. Possible interventions to address these barriers include the use of a multidisciplinary team that designs a program-specific checklist that periodically iterates by addressing staff concerns and encouraging participation in the modifications.

Of all the published checklists, there seemed to be one primary model that was adopted. Those designed from the WHO Surgical Safety Checklist emphasized improved communication and teamwork within the procedure room. It emphasized fewer checking off boxes and more team member engagement.

GOALS
1. Improve teamwork and communication
The Joint Commission analyzed 2455 sentinel events and found the primary root cause in over 70% was communication failure.9 The checklist may serve to democratize the procedure by facilitating everyone in the room to be more accountable and communicate more during the procedure.8 For example, communicating exactly what devices are needed beforehand may help the technologist be more aware of what will most likely be needed to decrease the chance of inadvertent or accidental opening of expensive products. Particularly now that device variety has increased, there is an even greater need to have mechanisms to minimize opening the wrong product.

Before beginning the procedure, everyone should face each other and introduce themselves with names. This should take 10 seconds. Particularly in larger hospitals, there are many people who rotate through the neurointerventional suite. It is easier to remember someone’s name while facing them. This stage of the time-out is when a collection of individuals transforms into a team.

The attending/fellow physician should be able to state in 1–2 sentences an overview of the case. This should take 30 seconds. The overview can include the patient’s problem, the anticipated procedure, the level of complexity, critical portions and what the primary concerns are. Providing essential context to everyone on the team assists with engagement, particularly among the technologists, who do not routinely evaluate patients preoperatively. This information then helps everyone track the progress as the case unfolds and even anticipate times of high acuity/complexity and be prepared to contribute.

Allow time for questions, which should take, at most, 1–2 min. It is better to raise issues early than during/after the case. This is particularly helpful for critically ill patients or those with multiple high acuity comorbidities. It is difficult to know what details are extraneous or vital to the outcome of the case. This process helps to ensure seemingly unimportant but potentially critical details are not overlooked. Examples include reliability of intravenous access, blood pressure monitoring methods, trends in vital signs, etc. The aim is to decrease barriers to voicing safety concerns. Foreshadowing concerns may prepare the team to respond more calmly and effectively if they do become a concern.

After the case, debriefing is an investment for future cases and should take at most 1–2 min. A discussion after the case allows for reflection on what went well, what was learned, near misses, complications, and any steps to improve the process next time. It is iterative and allows every team member to voice their thoughts so that the collective wisdom of the team continues to grow with each case.
2. Radiation safety for the patient and staff
As the procedure length and complexity in neurointerventional procedures increases, so does the risks of radiation exposure. This carries risks not just to the patient but also the staff, particularly for pediatric patients. This often overlooked risk may particularly benefit from inclusion into preprocedural checklists as it helps maintain appropriate habits.

The checklist should reinforce appropriate radiation shielding for the operator, including leaded glasses, lead aprons with thyroid shields, appropriate use of ceiling suspended leaded acrylic shields and standing upright leaded acrylic shields. Measures to reduce patient and staff radiation exposure include keeping the image intensifier as close to the patient as possible, minimizing time of actual fluoroscopy, keeping distance from the radiation source, and shielding. All of these measures are easy to overlook and if neglected, over time, can lead to years of unnecessary ionizing radiation exposure.

Appropriate protection for the anesthesiologist is sometimes an afterthought. One study found that radiation exposure for the anesthesiologist during interventional procedures was threefold more than the operator. Although conventional for the operator to wear leaded glasses and to use ceiling mounted leaded shields, no similar convention exists for anesthesiologists. The anesthesiologists may simply be unaware. Similarly, the orientation of the arms of the biplane machine, specifically the lateral arm X-ray source on the side of the anesthesiologist, leads to scatter reflecting towards anesthesia personnel. Highlighting radiation safety concerns for the patient and staff in the preprocedural checklist repeatedly brings these concerns to the forefront, and makes it easier for everyone on the team to develop good habits and police each other to make sure these measures are maintained throughout the procedure.

3. Complication prevention in neurointerventional surgery
A systematic review of studies looking at medical errors in interventional radiology procedures suggested that most errors are non-technical and that between 35–84% are preventable. Preventing complications would intuitively value reinforcing safety principles, teamwork and communication. The often overlooked but essential things, like checking the pressurized drip lines periodically, or monitoring anticoagulant administration, or an extra pair of eyes to ensure procedure sterility/contrast load/radiation exposure, or even looking at the monitor for concerns on imaging, become the team’s concern.

Particularly in emergent settings, where complications may occur more often, the value of checklists has been studied. In 1750 consecutive urgent surgeries, the latter 908 surgeries which employed the WHO safe surgery checklist yielded a 6.7% reduction in major complications (18.4% pre, 11.7% post; P=0.001) and a 2.3% reduction in mortality (3.7% pre, 1.4% post, P=0.0067).

Neurointerventional procedures are inherently complex and have high stakes. A checklist that increases team accountability and communication may directly help mitigate the occurrence of and/or harm associated with complications.

WFITN NEUROINTERVENTIONAL SURGERY PROCEDURE CHECKLIST
In order to be useful, however, the checklist has to be, above all else, practical. The focus should not be on checking off boxes, or generating a how-to guide. It should be designed to build the foundation for future effective communication during the case. Taking Fargen’s checklist as a framework, we decided to review all prior image-guided procedure checklists published and select those elements that promote team communication, radiation safety and complication prevention. At the same time, effort must be made to only include the most essential items because longer checklists will discourage adoption. Table 2 outlines, in three sections, critical elements to be included in a neurointerventional checklist.

Author affiliations
1. Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
2. Neurosurgery and Radiology and Wake Forest University, Winston-Salem, North Carolina, USA
3. The Mount Sinai Health System, New York, New York, USA
4. Neurosurgery and Radiology and Canon Stroke and Vascular Research Center, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
5. Neurosurgery, Gates Vascular Institute, Buffalo, New York, USA
6. Department of Neurosurgery, Aichi Medical University, Nagakute, Japan
7. Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
8. Mahidol University, Salaya, Thailand
9. Siriraj Hospital, Bangkok, Thailand
10. Flinders Medical Centre, Bedford Park, South Australia, Australia
11. Interventional Neuroradiology, Gold Coast University Hospital, Gold Coast, Queensland, Australia
12. National Institute of Neurosciences & Hospital, Sher-E-Bangla Nagar, Bangladesh
13. Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
14. Neurosurgery, Xuanwu Hospital, Beijing, Beijing, China
15. Qilu Hospital of Shandong University, Jinan, Shandong, China
16. Interventional Neuroradiology, Sanatorio Parque, Rosario - Santa Fe, Argentina
17. Neurosurgery, Hospital de Clinicas Jose de San Martin, Buenos Aires, Argentina
18. Neuroangiography, Zurich University Hospital, Zurich, Switzerland
19. University Hospital Centre Toulouse, Toulouse, Occitaine, France
20. Department of Radiology, Cerrahpasa Medical School, Istanbul, Turkey
21. Department of Radiology, ION Mediterranean Oncology Institute, Viagrande, Italy
22. Neurosurgery, Kameda Medical Center, Kamogawa, Japan
23. Division of Stroke Prevention and Treatment, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
24. Radiology, Gangnam Severance Hospital Yonsei University, Seoul, Korea (the Republic of)
25. Neurosurgery, Chonnam National University Hospital, Gwangju, Korea (the Republic of)
26. Sao Paulo State University Julio de Mesquita Filho - Rosana Campus, Rosana, Brazil
27. Hospital General de Fortaleza, Fortaleza, Brazil
28. Neuroangiography, University Hospital of Nantes, Nantes, France
29. Department of Interventional Neuroradiology - NEURU Brain Vascular Center, Bielétre Hospital, APHP, Le Kremlin Biétre, France
30. National Neuroscience Institute, Singapore
31. Department of Diagnostic Imaging, National University Health System, National University Hospital, Singapore
32. Interventional Neuroradiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
33. Neurosurgery, University of KwaZulu-Natal College of Health Sciences, Durban, South Africa
34. University of Cape Town, Cape Town, South Africa
35. Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada
36. Neurointerventional Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
37. Neurosurgery, University of Cape Town, Cape Town, South Africa

Collaborators
Standards

Contributors MC and KMF drafted the manuscript. All other authors provided edits and revisions.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

ORCID IDs
Michael Chen http://orcid.org/0000-0003-2412-8167
Kyle M Fargen http://orcid.org/0000-0001-8979-1993
J Mocco http://orcid.org/0000-0001-5489-2524
Adnan H Siddiqui http://orcid.org/0000-0002-9519-0059
Sergio Petrocelli http://orcid.org/0000-0003-0043-2148
Zsolt Kulcsar http://orcid.org/0000-0002-6805-5150
Sang Hyun Suh http://orcid.org/0000-0002-7098-4901
Woong Yoon http://orcid.org/0000-0002-8804-1848
Jildaz Caroff http://orcid.org/0000-0002-0029-1835
Gopinathan Anil http://orcid.org/0000-0002-8192-1287

REFERENCES