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ABSTRACT
Background  Minimally invasive intracranial drain 
placement is a common neurosurgical emergency 
procedure in patients with intracerebral hemorrhage 
(ICH). We aimed to retrospectively investigate the 
accuracy of conventional freehand (bedside) hemorrhage 
drain placement and to prospectively compare the 
accuracy of augmented/mixed reality-guided (AR) versus 
frame-based stereotaxy-guided (STX) and freehand drain 
placement in a phantom model.
Methods  A retrospective, single-center analysis 
evaluated the accuracy of drain placement in 73 
consecutive ICH with a visual rating of postinterventional 
CT data. In a head phantom with a simulated deep ICH, 
five neurosurgeons performed four punctures for each 
technique: STX, AR, and the freehand technique. The 
Euclidean distance to the target point and the lateral 
deviation of the achieved trajectory from the planned 
trajectory at target point level were compared between 
the three methods.
Results  Analysis of the clinical cases revealed an 
optimal drainage position in only 46/73 (63%). 
Correction of the drain was necessary in 23/73 cases 
(32%). In the phantom study, accuracy of AR was 
significantly higher than the freehand method (P<0.001 
for both Euclidean and lateral distances). The Euclidean 
distance using AR (median 3 mm) was close to that using 
STX (median 1.95 mm; P=0.023).
Conclusions  We demonstrated that the accuracy of 
the freehand technique was low and that subsequent 
position correction was common. In a phantom model, 
AR drainage placement was significantly more precise 
than the freehand method. AR has great potential to 
increase precision of emergency intracranial punctures in 
a bedside setting.

INTRODUCTION
Acute placement of an intracranial drain is neces-
sary for various constellations in clinical neurosur-
gery. Spontaneous intracerebral hemorrhage (ICH) 
is a frequent indication for drainage, considered 
for hemorrhage volumes >30 mL.1 2 Accordingly, 
although open surgical evacuation of spontaneous 
ICH has failed to show clinical benefit,3 4 recent 
studies suggest that some patients may benefit from 
a timely and precise minimally invasive hematoma 
evacuation in terms of a ‘MISTIE procedure’.2 5 6

There are different minimally invasive tech-
niques for the placement of intracranial drains, and 
‘high precision’ procedures (associated with a high 
expenditure of time and material) can be distin-
guished from ‘conventional’ freehand drainage. In 
particular, highly precise procedures include the 
current ‘gold standard’ stereotactic-guided (STX) 
drainage, which necessitates application of a stereo-
tactic frame with subsequent image acquisition and 
choice of an appropriate trajectory. Other tech-
niques include endoscopic hemorrhage drainage 
placement and procedures using intraoperative 
image guidance (‘neuronavigated surgery’). These 
are usually performed in a primarily surgical envi-
ronment (the operating room (OR)), which signifi-
cantly increases the procedural time required and 
the cost. In contrast, current freehand ‘bedside’ 
drainage techniques use superficial head landmarks, 
such as the nasion, coronal suture, and external 
auditory canal.7 Non-OR-based procedures can 
save time, but are likely to be associated with lower 
precision. Attempts to improve precision of bedside 
procedures may also include the use of ultrasound;8 
however, to our knowledge there are currently no 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Augmented reality is increasingly being 
investigated for freehand bedsite interventions. 
Current studies on the treatment of 
intracerebral hemorrhage suggest that a timely 
minimally invasive drainage is beneficial.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates a high precision 
of augmented reality guided drainage 
placement. For this purpose, a systematic 
study was performed in a phantom model with 
comparison to stereotaxy and landmark-based 
freehand methods.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These results provide a basis for applying 
augmented reality in a clinical context for 
precise and timely drainage placement in 
deep intracerebral hemorrhage but also other 
applications (e.g. external ventricular drainage).
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data available that demonstrate an improvement in precision 
in a prospective setting. Further, angiosuite flat detector9 or 
computed tomography (CT)10 guidance have also been shown 
to improve accuracy and enable immediate image acquisition 
for positional control after drain placement. To our knowledge, 
there are few data on the accuracy of bedside intracranial punc-
ture procedures. In a retrospective study of 346 patients who 
underwent bedside ventriculostomy, external ventricular drain 
(EVD) placement was rated as optimal in 77% of cases and 
bleeding complications occurred in 5%.11

Therefore, we retrospectively analyzed our internal data 
regarding the drainage position after bedside freehand puncture 
(performed according to the following standard12) performed in 
patients with supratentorial ICH. With the advent of augmented 
reality (AR)/mixed reality techniques, new applications are 
emerging in which isotropic image datasets can be overlaid with 
patients or simulated patient models and used to guide a proce-
dure.13–20 Recent hardware products such as the Magic Leap 1 
(Magic Leap, Plantation, FA, USA; in collaboration with Brainlab, 
Munich, Germany) are easy to carry and capable of transmit-
ting high-resolution image datasets in real time. Compared with 
freehand landmark-based techniques, AR-guidance may be used 
to perform rhizotomy of the Gasserian ganglion with increased 
accuracy.21 These techniques combine increased accuracy with 
feasibility for use in a ‘bedside procedure setting’, with justifiable 
time expenditure. However, the methods are not yet approved 
for clinical use, as precision and applicability in the clinical 
setting require further studies. Since the application of these new 
technologies to intracranial punctures has not been adequately 
tested, our study aimed to compare the accuracy of AR-guided 
drainage with clinically established techniques (STX and free-
hand drainage) using a realistic skull model in a simulated deep 
ICH.

METHODS
Clinical study of ICH drainage position
In a retrospective analysis of patient data in a tertiary referral 
center between January 2010 and December 2012 (36 months), 
we identified all patients with supratentorial ICH, who had 
received a freehand drain placement and postintervention CT. 
Drain location was classified by a board-certified neuroradiol-
ogist according to: (1) the location of the drain tip (perforated 
apically and sidewards) within (ie, 360° surrounded by) hyper-
dense hemorrhage components; (2) the marginal location of the 
drain tip, with the drain tip adjacent to hyperdense hemorrhage 
components; (3) the location of the drain tip outside the hemor-
rhage area (ie, surrounded by brain parenchyma); and (4) the 
drain tip passed through the hemorrhage area but the drain tip 
protruded beyond into adjacent brain parenchyma. In addition, 
the number of (CT-documented) repositions was evaluated on a 
case level.

Phantom study comparing STX, AR, and freehand techniques
We built a head phantom using an X-ray-dense bone skull model 
(Zimmer Biomet Holdings, Inc., Warsaw, IN, USA) and a simu-
lated deep ICH at the level of the right basal ganglia, with a total 
volume of 82 mL. The hemorrhage model was a surgical glove 
filled with a sponge soaked in Solutrast 250M diluted 1:10 with 
saline solution 0.9%, and an iron fragment (1 mm) placed in the 
center, indicating the target point. A CT scan of the phantom 
was acquired (Siemens Somatom Scope; Siemens Healthcare, 
Forchheim, Germany; tube voltage 130 kV, exposure 65 mAs, 
pitch factor 0,55, tilt 0º, slice thickness 0.75 mm, helical mode). 

Digital imaging and communications in medicine (DICOM) 
images were transferred to a neurosurgical planning workstation 
(Brainlab Elements; Brainlab AG, Munich, Germany), where 
the optimal trajectory for drain placement was determined by 
an experienced functional neurosurgeon and superimposed into 
a 3D dataset. The 3D model including the optimal trajectory 
was then transferred to the AR headset (Magic Leap 1; Brainlab 
AG, Munich, Germany). The skull model was then filled 
with commercial petroleum jelly. For practical reasons and to 
preserve the integrity of the phantom model, a large-area right 
frontal craniotomy was carried out instead of drilling individual 
burr holes (figure 1 and online supplemental video). Five neuro-
surgeons trained in stereotactic neurosurgery independently 
performed four punctures for each technique: STX, AR, and 
the freehand approach (figure 1). Stereotactic procedures were 
performed using the Leksell Coordinate G-Frame (Elekta, Stock-
holm, Sweden) and Stereotactic Arc (Leksell Multi-Purpose 
Stereotactic Arc; Elekta). For AR, the holographic projection 
(hologram) of the phantom was manually aligned with the skull 
model (figure  1 and online supplemental video). Once suffi-
ciently aligned, the operator tried to replicate the superimposed 
virtual trajectory in order to place a 23 cm long silicone drain, 
threaded on a guide needle, as routinely used in clinical prac-
tice (straight ventricular catheter, 1.5 mm inner diameter, 3 mm 
outer diameter, multiperforated over a distance of 25 mm from 
the proximal tip, radiopaque strip; Sophysa, Orsay, France) 
(figure 1). Freehand punctures were planned using preoperative 
3D isotropic scans in a Picture Archiving and Communication 
System (PACS) multiplanar reformations plugin. The puncture 
site was determined based on the superficial distance, starting 
from the nasion, the lateral deviation between target point and 
midline, and puncture depth.12 The external auditory canals 
were used as superficial landmarks to define the midline and 
to estimate the angulation of the puncture. After each drain 
placement, a CT scan was performed to document the needle 
tip position and trajectory. To address training effects and habit-
uation, the sequence of procedure techniques (STX, AR, and 
freehand approach) was randomized. The CT images after each 
needle placement were transferred to the planning workstation, 
and both the Euclidean distance between the achieved needle 
tip position and the target point, as well as the lateral deviation 
between the achieved trajectory and the optimal trajectory at the 
level of the target point, were analyzed. The clinical study was 
performed in accordance with the 1964 Declaration of Helsinki 
and its subsequent amendments and was approved by the local 
ethics committee (EK-FR 131/19). No ethical approval was 
required for the phantom trial.

Statistics
The normal distribution was tested using the Shapiro–Wilk test. 
Non-parametric values are presented as median and interquartile 

Figure 1  Intracerebral hemorrhage punctures performed in a 
phantom model under stereotactic (A), augmented reality (B) guidance, 
or using the freehand technique based on superficial landmarks (C).
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ranges (IQR) as appropriate. A repeated-measures non-parametric 
ANOVA with Durbin–Conover pairwise comparison test was 
calculated over Euclidean and lateral distances between target 
and drain tip points, comparing STX, AR, and freehand drain 
placements. All statistical analyses were performed using R 
statistics V. 4.0 (R Core Team 2020; https://www.R-project.org). 
Boxplots were calculated using CRAN.R packages.

RESULTS
Retrospective clinical data on ICH drainage position
Within 36 months, 71 patients (30 female; median age 73.1 (IQR 
19.2) years) with 73 supratentorial ICH required drainage (two 
patients had multilocular ICH components). In these ICH, the 
postinterventional drainage position (referring to the perforated 
drainage tip) was rated as optimal in 46/73 (63%), marginal in 
23/73 (32%), and outside the bleeding area in 4/73 (5%) cases. 
Of note, the drainage tip initially extended beyond the ICH area 
in 31/73 (42%) cases. In total, repositioning was conducted in 
23/73 (32%) of ICH, with two cases requiring more than one 
correction. However, no hemorrhagic complications beyond the 
bleeding volume were detectable on imaging.

Phantom study comparing STX, AR, and freehand techniques
There was an overall group difference regarding the Euclidean 
distance (χ2 29.0, df 2; P<0.001) and also lateral deviation (χ2 
31.5, df 2; P<0.001) from the target point. In the pairwise 
comparison, the Euclidean distance with AR (median 3.0 (IQR 
1.7) mm) was significantly lower than with the freehand tech-
nique (median 11.1 (IQR 6.7) mm; P<0.001). There was also a 
significantly lower lateral deviation with AR (median 2.3 (IQR 
2.1) mm) compared with the freehand technique (median 9.5 
(IQR 7.4) mm; P<0.001). STX, as the gold standard, showed 
the highest accuracy of any method, with a median Euclidean 
distance of 2.0 (IQR 1.6) mm (P=0.023 vs AR and P<0.001 vs 
freehand) and a median lateral deviation of 0.9 (IQR 0.5) mm 
(P<0.001 vs AR and freehand). The maximum Euclidean devia-
tion of a puncture was 23.5 mm and the maximum lateral devia-
tion was 18.2 mm – both performed with the freehand technique. 
Descriptive values are presented in table 1, with distributions in 
figure 2.

DISCUSSION
Current literature suggests that patients with spontaneous supra-
tentorial ICH may benefit from minimally invasive hemorrhage 
drainage; however, further data evaluating early, minimally 
invasive drainage in particular are required.2 Even in primary 
care centers, current minimally invasive techniques such as STX, 
neuronavigation, or endoscopic techniques are not commonly 
available 24/7. Conversely, our in-house retrospective analysis 
of 73 supratentorial ICH in a primary care setting demonstrated 

that common bedside puncture techniques can be inaccurate, 
requiring (mostly single) drain repositioning in 32% of cases – 
results that are consistent with the existing literature on external 
ventriculostomies.11 Therefore, we believe there is a need for 
readily available, easy-to-perform techniques that allow for 
precise catheter placement.

Our data also showed that a marginal drainage position was 
much more common than an aberrant (intraparenchymal) posi-
tion, and we assume that corrections were also made for func-
tional reasons (eg, non-functional drainage). However, drainage 
tip positions exceeding the bleeding volume in the axis of the 
drainage were also frequent (42%). The data are comparable to 
the bedside ventriculostomy study by Kakarla et al11 in which 
an optimal location of an EVD was described in 77% of cases. 
However, no hemorrhagic complications were observed in our 
study.

According to our results in the realistic phantom model, AR 
led to enhanced precision compared with the conventional 
bedside technique. In almost all punctures, we achieved accu-
racies of less than 1 cm, and in 15/20 cases even less than 5 mm, 
(measured by Euclidean distances and lateral deviations), which 
was not the case for most of the conventional punctures. The 
accuracy of AR-assisted drainage placement was, in fact, very 
close to stereotactic guidance. The question of whether and 
to what extent this superior precision could result in a clinical 
benefit remains open. However, the need for increased preci-
sion in bedside punctures of ICH can also be supported by the 
following consideration: if drainage is considered in a volume 
of ≥30 mL, as per current guidelines,1 this would correspond 
to a radius of 1.93 cm, assuming a spherical configuration. Even 
greater accuracy is desired in non-spherical daily routine cases 
of ICH.

In our study, AR puncture was preceded by visual surface-
based and manual co-registration of the 3D dataset with the 
phantom model. We anticipate that further improvements can 
be expected soon, possibly including (semi-)automated surface-
based co-registration,22 which may lead not only to more rapidly 
performable punctures but also to higher accuracy. To provide an 
outlook for a future clinical scenario, the applied experimental 
setting was exemplarily transferred to a simulated puncture in 
the intensive care unit (figure 3 and online supplemental video). 
Application in a bedside setting would primarily have the advan-
tage of even faster feasibility and potential reduction in the use 
of (costly) OR capacity. This is the reason why some centers do 
them as bedside procedures.12

Previous studies have shown that hematoma evacuation in 
spontaneous supratentorial ICH has the potential for improve-
ment in functional outcome and mortality at 3 to 12 months.2 
In this regard, early drain placement, ideally using a minimally 

Table 1  Descriptive values of Euclidean distance and lateral 
deviation using stereotactic-guided (STX), augmented reality-guided 
(AR), and freehand (CONV) techniques

Euclidean distance (mm) Lateral deviation (mm)

STX AR CONV STX AR CONV

Median 2.0 3.0 11.1 0.9 2.3 9.5

Interquartile 
range

1.6 1.7 6.7 0.5 2.1 7.4

Minimum 0.9 1.5 3.9 0.4 0.8 2.8

Maximum 4.3 11.0 23.5 2.6 10.9 18.2

Figure 2  Technical accuracy achieved measuring the Euclidean 
distance to the target point (A) and lateral deviation of the achieved 
trajectory from the planned trajectory at target point level (B) using 
stereotactic-guided (STX), augmented reality-guided (AR), and freehand 
(CONV) techniques.
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invasive technique, seems most promising. In MISTIE III, surgical 
treatment was started on average 58.3 hours after symptom onset, 
the first administration of alteplase was made after an average of 
72.6 hours, and treatment was completed after on average 123 
hours. This fact being related to the study design is related to 
previous evidence of increased rebleeding rates, when evacu-
ation is performed early.23 However, in MISTIE III, increased 
volume reduction was related to higher likelihood of improved 
clinical outcomes (modified Rankin Scale (mRS) 0–3).6 Future 
studies should, on the one hand, consider the potential risk of 
rebleeding based on current evidence24 but, on the other hand, 
aim for early, minimally invasive drain placement with relevant 
ICH volume reduction.

There are limitations to our study. Unfortunately, portable 
frameless navigation techniques, which are used in many centers 
in the bedside setting, for example for ventricular puncture, were 
not part of our study. It is obvious to compare these with mixed-
reality applications in the near future, especially with regard to 
the achievable precision. We used a phantom model that is opti-
mized for multiple punctures with different modalities based on 
the experimental design. The phantom used is realistic in the 
sense that cerebral soft tissue was simulated by petroleum jelly, 
which created a realistic feel of the puncture from the surgeon’s 
point of view. In addition, petroleum jelly has the advantage over 
agar, for example, in that a previous puncture channel closes 
completely spontaneously or after minor remodeling and is 
subsequently neither visually nor haptically detectable. Never-
theless, due to the limited stability of the cranial plaster material 
regarding multiple punctures, and due to probable biasing by 
previous punctures, no individual trepanations were performed. 
The model used does not account for potential errors that may 
occur during drilling of individual burr holes. In the future, this 
model could be refined by using new bone flaps for each punc-
ture in order to incorporate the potential error due to drilling 
of burr holes. However, the acquired image data used can be 
considered realistic. Furthermore, only one striatal hemorrhage 

model was used; nevertheless, this can be considered a frequent 
and realistic scenario in clinical routine.

There is a need for more precise, easily available, mini-
mally invasive techniques to drain ICH. The AR technique 
combines greater precision of cranial puncture with applica-
bility in a bedside setting compared with the conventional 
technique, and thus has great future potential to replace 
highly precise yet resource-intensive intraoperative tech-
niques in most cases. In addition, there are interesting poten-
tial applications of AR such as in EVD placement in patients 
with narrow lateral ventricles, in application of pain therapy 
procedures or in the planning of craniotomies, and in brain 
tumor surgery, which could make this technology a multi-
functional tool for neurosurgery.

CONCLUSIONS
According to our clinical analysis, the freehand bedside punc-
ture technique for ICH drainage is inaccurate. In a simulation 
study of deep ICH, the accuracy of drain placement can be 
significantly increased by AR and almost reaches that of a 
more cumbersome stereotactic procedure. AR promises that 
intracranial punctures can be performed precisely even in a 
bedside setting.
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Figure 3  Cranial puncture in an intracerebral hemorrhage phantom 
model, simulating a bedside intensive care unit setting with augmented 
reality guidance (A). The Magic Leap 1 headset provides image 
representations in space that can be freely moved and magnified 
with a remote control device (B, pink line). The puncture is performed 
after superimposing the 3D dataset with the real phantom model 
(C), following the previously planned trajectory (green line).
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