Original research

Time to treatment with bridging intravenous alteplase before endovascular treatment: subanalysis of the randomized controlled SWIFT-DIRECT trial

Thomas R Meinel,1 Johannes Kaesmacher,2 Lukas Buetikofer,3 Daniel Strbian,4 Omer Faruk Eker,5 Christophe Cognard,6 Pasquale Mordasini,2 Sandro Deppeler,7 Vitor Mendes Pereira,8 Jean François Albucher,9 Jean Darcourt,9 Romain Bourcieu,10 Benoit Guillou,11 Chrysanthi Papagiannaki,12 Guillaume Costentin,13 Gerli Sibol,4 Silja Räty,4 Benjamin Gory,14 Sébastien Richard,15 Jan Liman,16 Marielle Ernst,17 Marion Boulanger,18 Charlotte Barbier,19 Laura Machtouff,20 Liqun Zhang,21 Gaultier Marnat,22 Igor Sibon,23 Omid Nikoubashman,24 Arno Reich,25 Arturo Consoli,26 David Weisengerber,26 Manuel Requena,27,28 Alvaro Garcia-Tornel,27 Suzana Saleme,29 Solène Moulin,30 Paolo Pagano,31 Guillaume Saliou,32 Emmanuel Carrera,33 Kevin Janot,34 Marti Boix,35 Raoul Pop,36 Lucie Della Schiava,37 Andreas Luft,38,39 Michel Piotin,40 Jean Christophe Gentric,41 Aleksandra Pikula,42 Waltraud Pfeilschifter,43 Marcel Arnold,1 Adnan Siddiqui,44 Michael T Froehler,45 Anthony J Furlan,46 René Chapot,47 Martin Wiesmann,24 Paolo Machi,48 Hans-Christoph Dienes,49 Zsolt Kulcsar,50 Leo Bonati,51 Claudio Bassetti,1 Simon Escalard,40 David Liebeskind,52 Jeffrey L Saver,52 Urs Fischer,1,51 Jan Gralla,2 on behalf of the SWIFT-DIRECT investigators

ABSTRACT

Background We hypothesized that treatment delays might be an effect modifier regarding risks and benefits of intravenous thrombolysis (IVT) before mechanical thrombectomy (MT).

Methods We used the dataset of the SWIFT-DIRECT trial, which randomized 408 patients to IVT+MT or MT alone. Potential interactions between assignment to IVT+MT and expected time from onset-to-needle (OTN) as well as expected time from door-to-needle (DTN) were included in regression models. The primary outcome was functional independence (modified Rankin Scale (mRS) 0–2) at 3 months. Secondary outcomes included mRS shift, mortality, recanalization rates, and (symptomatic) intracranial hemorrhage at 24 hours.

Results We included 408 patients (IVT+MT 207, MT 201, median age 72 years (IQR 64–81), 209 (51.2%) female). The expected median OTN and DTN were 142 min and 54 min in the IVT+MT group and 129 min and 51 min in the MT alone group. Overall, there was no significant interaction between OTN and bridging IVT assignment regarding either the functional (adjusted OR 0.76, 95% CI 0.45 to 1.30) and safety outcomes or the recanalization rates. Analysis of in-hospital delays showed no significant interaction between DTN and bridging IVT assignment regarding the dichotomized functional outcome (aOR 0.48, 95% CI 0.14 to 1.62), but the shift and mortality analyses suggested a greater benefit of IVT when in-hospital delays were short.

Conclusions We found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering its low power, this subgroup analysis could have missed a clinically important effect, and exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT with shorter in-hospital delays. Heterogeneity of the IVT effect size before MT should be further analyzed in individual patient meta-analysis of comparable trials.

Trial registration number URL: https://www.clinicaltrials.gov; Unique identifier: NCT03192332

INTRODUCTION

Whether mechanical thrombectomy (MT) alone can be regarded as equally effective as MT combined with bridging intravenous thrombolysis (IVT+MT) for patients admitted directly to centers with endovascular treatment capability remains controversial.1,2 Two trials in Chinese patients demonstrated non-inferiority of MT alone,3 4 whereas three other trials failed to show non-inferiority.5–7 All these trials used generous non-inferiority margins, which
are considerably less conservative than the proposed minimal clinically important difference or the margin considered to constitute reasonable comparability. The expedited recommendation of the European Stroke Organisation currently advises that patients admitted to MT-capable centers should undergo IVT+MT if eligible for both treatments.

None of the individual subgroup analyses of these trials showed a significant difference regarding time from onset of symptoms to randomization (OTR). However, the point estimates indicated a potential time-dependent relationship between bridging IVT and functional outcome (Table 1). In unselected stroke patients, the efficacy of IVT is known to be highly time-dependent. Therefore, we hypothesized that treatment delays might be an effect modifier regarding risks and benefits of IVT in patients enrolled in the SWIFT-DIRECT trial and that a more beneficial effect of IVT would be seen in patients with shorter treatment delays.

This analysis aimed to assess a potential treatment effect heterogeneity of IVT+MT versus MT alone according to the overall delay (onset-to-needle, OTN) and in-hospital delays (door-to-needle, DTN) in terms of functional outcome, technical efficacy and safety outcomes. Additionally, if a heterogeneity of treatment effect was found, we intended to characterize the extent to which modification occurs and the time period during which adding IVT might confer significant benefits.

METHODS

Reporting, data sharing, ethics

For this post-hoc sub-analysis of the randomized controlled SWIFT-DIRECT study (https://clinicaltrials.gov/NCT03192332), we followed the CONSORT (Consolidated Standards of Reporting Trials) guidelines. The SWIFT-DIRECT dataset is not publicly available. However, de-identified data, together with a data dictionary, will be made accessible after ethics clearance and on submission of a reasonable request with a research plan to the corresponding author. Written informed consent was obtained from patients or their next of kin, with selected countries allowing delayed informed consent due to emergency circumstances. Approval was obtained from all relevant local ethics committees (central ethics Bern, ID 2017–00974).

Study design and patients

SWIFT-DIRECT was an international, multicenter, randomized, open label, blinded endpoint (PROBE) trial assessing the non-inferiority of MT alone versus IVT+MT in patients presenting directly to one of 48 participating MT-capable stroke centers in Europe and Canada. The trial protocol and main results, including details of the methodology, have already been published. Patients were eligible if they had imaging-confirmed occlusion of the intracranial carotid artery and/or the first segment (M1) of the middle cerebral artery; were eligible to receive alteplase within 4.5 hours after they were last seen well; could undergo MT within 75 min of randomization; and had severe neurological deficits, defined as a National Institutes of Health Stroke Scale (NIHSS) score of ≥5. Patients with advanced dementia, significant pre-existing disabilities, and early severe tissue damage (Alberta Stroke Programme Early CT Score (ASPECTS) <5) were excluded. A total of 408 patients fulfilling those criteria were randomized (1:1 ratio) to undergo MT alone or IVT+MT (intravenous alteplase, 0.9 mg/kg of body weight). We included all patients in this post-hoc analysis.

Time definitions

The goal of our study was to assess whether time to treatment was an effect modifier—that is, it would have an impact on the effect of IVT plus MT versus MT alone—with the idea that, depending on the time to treatment, additional IVT might show a benefit compared with MT alone. The time interval analyzed for the overall time delay was hence the expected OTN. This

Table 1 Subgroup analysis of published randomized controlled trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Source</th>
<th>Outcome</th>
<th>Subgroup</th>
<th>acOR/aOR point estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCLean-NoIV</td>
<td>online supplemental figure S3</td>
<td>Ordinal mRS score</td>
<td>OTR 13–77 min</td>
<td>0.75 (0.43 to 1.31)</td>
</tr>
<tr>
<td>DIRECT-MT</td>
<td>online supplemental figure S4</td>
<td>Ordinal mRS score</td>
<td>OTR ≤125 min</td>
<td>0.93 (0.54 to 1.61)</td>
</tr>
<tr>
<td>DEVT</td>
<td>online supplemental figure 6</td>
<td>mRS 0–2</td>
<td>OTR <169 min</td>
<td>0.97 (0.41 to 2.3)</td>
</tr>
<tr>
<td>SKIP</td>
<td>Main paper figure 3</td>
<td>mRS 0–2</td>
<td>OTR ≤120 min</td>
<td>0.77 (0.33 to 1.78)</td>
</tr>
</tbody>
</table>

In all trials a higher aOR is favorable withholding bridging IVT, while a lower aOR favors administering IVT before MT. acOR, adjusted common OR; aOR, adjusted OR; IVT, intravenous thrombolysis; mRS, modified Rankin Scale; OTR, onset-to-randomization time.
Ischemic stroke was defined as time from symptom onset or last known well to expected IVT bolus. It was calculated by adding the mean randomization-to-bolus-time to the onset-to-randomization value, for each patient in both the MT alone and the IVT+MT treatment groups.

For the in-hospital delay, the expected DTN was analyzed. This was defined as the time from arrival at the emergency department of the study hospital to the expected IVT bolus. It was defined as time from symptom onset or last known well to expected IVT bolus. It was calculated by adding the mean randomization-to-bolus-time to the onset-to-randomization value, for each patient in both the MT alone and the IVT+MT treatment groups.

For the in-hospital delay, the expected DTN was analyzed. This was defined as the time from arrival at the emergency department of the study hospital to the expected IVT bolus. It was defined as time from symptom onset or last known well to expected IVT bolus. It was calculated by adding the mean randomization-to-bolus-time to the onset-to-randomization value, for each patient in both the MT alone and the IVT+MT treatment groups.

For the in-hospital delay, the expected DTN was analyzed. This was defined as the time from arrival at the emergency department of the study hospital to the expected IVT bolus. It was defined as time from symptom onset or last known well to expected IVT bolus. It was calculated by adding the mean randomization-to-bolus-time to the onset-to-randomization value, for each patient in both the MT alone and the IVT+MT treatment groups.

Table 2
Selected baseline characteristics according to time from symptom onset to needle

<table>
<thead>
<tr>
<th></th>
<th>Time from symptom onset to needle</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–3 hours (n=316)</td>
<td>>3 hours (n=92)</td>
<td>P value</td>
</tr>
<tr>
<td>Age at inclusion (years), median (IQR)</td>
<td>316</td>
<td>72 (64–81)</td>
<td>92</td>
</tr>
<tr>
<td>Female sex, no. (%)</td>
<td>316</td>
<td>159 (50.3%)</td>
<td>92</td>
</tr>
<tr>
<td>NIHSS, median (IQR)</td>
<td>316</td>
<td>17 (13–20)</td>
<td>92</td>
</tr>
<tr>
<td>Pre-stroke mRS, no. (%)</td>
<td>316</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>269 (85.1%)</td>
<td>77 (83.7%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>46 (14.6%)</td>
<td>15 (16.3%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 (0.3%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>Weight (kg), median (IQR)</td>
<td>293</td>
<td>75 (65–85)</td>
<td>89</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg), median (IQR)</td>
<td>312</td>
<td>147 (130–160)</td>
<td>91</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg), median (IQR)</td>
<td>310</td>
<td>80 (70–90)</td>
<td>90</td>
</tr>
<tr>
<td>Heart rate (beats/min), median (IQR)</td>
<td>309</td>
<td>75 (64–88)</td>
<td>88</td>
</tr>
<tr>
<td>Previous ischemic stroke, no. (%)</td>
<td>304</td>
<td>30 (9.5%)</td>
<td>90</td>
</tr>
<tr>
<td>Previous transient ischemic attack, no. (%)</td>
<td>300</td>
<td>14 (4.4%)</td>
<td>89</td>
</tr>
<tr>
<td>History of hypertension, no. (%)</td>
<td>306</td>
<td>185 (58.5%)</td>
<td>92</td>
</tr>
<tr>
<td>History of atrial fibrillation, no. (%)</td>
<td>299</td>
<td>28 (8.9%)</td>
<td>88</td>
</tr>
<tr>
<td>History of hypercholesterolemia, no. (%)</td>
<td>298</td>
<td>98 (31.0%)</td>
<td>89</td>
</tr>
<tr>
<td>Previous intracerebral hemorrhage, no. (%)</td>
<td>307</td>
<td>7 (2.3%)</td>
<td>90</td>
</tr>
<tr>
<td>Prior myocardial infarction, no. (%)</td>
<td>301</td>
<td>37 (11.7%)</td>
<td>89</td>
</tr>
<tr>
<td>Warfarin or other anticoagulant, no. (%)</td>
<td>316</td>
<td>11 (3.5%)</td>
<td>92</td>
</tr>
<tr>
<td>Aspirin, no. (%)</td>
<td>316</td>
<td>84 (26.6%)</td>
<td>92</td>
</tr>
<tr>
<td>Statin or other lipid lowering agent, no. (%)</td>
<td>316</td>
<td>91 (28.8%)</td>
<td>92</td>
</tr>
<tr>
<td>Blood glucose level (mmol/L), median (IQR)</td>
<td>303</td>
<td>6.5 (5.7–7.5)</td>
<td>82</td>
</tr>
<tr>
<td>INR, median (IQR)</td>
<td>253</td>
<td>1.0 (1.0–1.1)</td>
<td>67</td>
</tr>
<tr>
<td>Platelet count (<10^9/L), median (IQR)</td>
<td>314</td>
<td>225 (187–268)</td>
<td>91</td>
</tr>
<tr>
<td>Hemoglobin (g/L), median (IQR)</td>
<td>316</td>
<td>137 (125–146)</td>
<td>92</td>
</tr>
<tr>
<td>Glomerular filtration rate (mL/min), median (IQR)</td>
<td>316</td>
<td>76 (62–90)</td>
<td>92</td>
</tr>
<tr>
<td>Baseline imaging, no. (%)</td>
<td>316</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td>177 (56.0%)</td>
<td>28 (30.4%)</td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>137 (43.4%)</td>
<td>63 (68.5%)</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>2 (0.6%)</td>
<td>1 (1.1%)</td>
<td></td>
</tr>
<tr>
<td>ASPECTS (core lab), median (IQR)</td>
<td>315</td>
<td>8.0 (7.0–9.0)</td>
<td>92</td>
</tr>
<tr>
<td>Baseline intracranial occlusion site, no. (%)</td>
<td>316</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Continued

<table>
<thead>
<tr>
<th></th>
<th>Time from symptom onset to needle</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–3 hours (n=316)</td>
<td>>3 hours (n=92)</td>
<td>P value</td>
</tr>
<tr>
<td>Distal ICA - I</td>
<td>12 (3.8%)</td>
<td>4 (4.3%)</td>
<td></td>
</tr>
<tr>
<td>Distal ICA - I and M1</td>
<td>2 (0.6%)</td>
<td>0 (0.0%)</td>
<td></td>
</tr>
<tr>
<td>Distal ICA - L</td>
<td>41 (13.0%)</td>
<td>13 (14.1%)</td>
<td></td>
</tr>
<tr>
<td>Distal ICA - T</td>
<td>37 (11.7%)</td>
<td>8 (8.7%)</td>
<td></td>
</tr>
<tr>
<td>Distal M1</td>
<td>96 (30.4%)</td>
<td>29 (31.5%)</td>
<td></td>
</tr>
<tr>
<td>Distal M2</td>
<td>3 (0.9%)</td>
<td>1 (1.1%)</td>
<td></td>
</tr>
<tr>
<td>Proximal M1</td>
<td>110 (34.8%)</td>
<td>34 (37.0%)</td>
<td></td>
</tr>
<tr>
<td>Proximal M2</td>
<td>15 (4.7%)</td>
<td>3 (3.3%)</td>
<td></td>
</tr>
<tr>
<td>Tandem lesion, no. (%)</td>
<td>316</td>
<td>45 (14.2%)</td>
<td>92</td>
</tr>
</tbody>
</table>

ASPECTS, Alberta Stroke Programme Early CT Score; ICA, internal carotid artery; INR, International normalized ratio; mRS, modified Rankin Scale; N*, number of patients with non-missing data; NIHSS, National Institutes of Health Stroke Scale.

Figure 1
Distribution of time to treatment variables by randomization group. The median expected onset-to-needle time was 135 min (IQR 107–176) and the median expected door-to-needle time 53 min (IQR 40–69), without significant differences between both arms. The expected times were calculated as specified in the methods. For one patient the randomization date was interpolated. ED, emergency department.
was calculated by adding to the door-to-randomization value, for each patient in both the MT alone and IVT+MT groups, the study mean for the randomization to bolus time. Those somewhat artificial time intervals were chosen since they represent the clinical scenario outside randomized controlled trials better than onset-to-randomization and door-to-randomization times. They are therefore easier to interpret and applicable to stroke centers. The study mean of DTN time was used due to the small sample sizes at individual centers and because there was little variation across sites. As a post-hoc sensitivity analysis, we used the individual time to IVT bolus administration for patients who received this treatment.

Outcomes
Detailed definitions are available in the statistical analysis plan that was finalized and deposited before the analysis. The primary endpoint was functional independence, defined as modified Rankin Scale (mRS) ≤2 at 90 days. Secondary outcomes included mRS shift analysis, all-cause mortality, and time-to-reperfusion defined as expanded Thrombolysis In Cerebral Infarction (eTICI ≥2b). We also analyzed pharmacological efficacy (pre-interventional cross-sectional eTICI ≥2a (cs-eTICI), technical efficacy (eTICI ≥2b following device use) and safety outcomes (any and symptomatic intracranial hemorrhage, with the latter defined as ≥4 points worsening on the NIHSS within 24 hours).13

Statistical analysis
An independent statistician (LB) organized, cleaned and analyzed the data according to the prespecified statistical analysis plan (see the online supplemental material). The intention-to-treat population was analyzed for a potential time- and IVT-arm-assignment interaction by comparing the outcomes in the IVT arm to the outcomes in the no IVT arm. Participant characteristics at randomization by time intervals from onset/last-seen-well to randomization were described using medians with IQR for continuous variables and proportions for discrete variables including all variables employed in any subsequent model.

The interaction was analyzed using logistic, linear or flexible parametric survival models for binary, continuous or time-to-event outcomes, respectively. For rare binary outcome, penalized maximum likelihood logistic regression (Firth method) was used. For the primary analysis, we analyzed the interaction term of the time interval (continuous variable)×IVT assignment. A linear relationship was used as default, but more flexible approaches (ie, fractional polynomials and linear splines) were also considered. For a secondary analysis, predefined time cutoffs were used with the rationale of the ‘golden hour’ for IVT (OTN 0–60 min vs 61–270 min),14 the Food and Drug Administration label for alteplase (0–180 min vs 181–270 min), and according to quartiles of OTN.15 Models were compared using Akaike and Bayesian information criteria. Interaction terms are reported with 95% confidence intervals (95% CI) and p values. Interpretation of p values of the interaction was based on the recommendations of the Instrument for assessing the Credibility of Effect Modification Analyses (ICEMAN) tool.16

Models were adjusted by the binary stratification variables and sex. Further covariate adjustments for baseline differences between early and late presenting patients were considered.

RESULTS
Cohort characteristics
Between November 2017 and May 2021, 423 patients at 42 centers were randomized and 15 patients were excluded after randomization. Altogether, 201 patients were assigned to MT alone and 207 to IVT+MT. The allocated intervention was received by 402/408 patients with three crossovers in each treatment arm. Data completeness was almost perfect for mRS (one missing) and >95% for all other outcomes (see online supplemental figure S1 for the CONSORT flow-chart). The median age was 72 years (IQR 64–81), 209 (51.2%) were female, and the median NIHSS was 17 (13–20). The median OTN was 135 min (IQR 107–176) and the median DTN was 53 min (IQR 40–69). The expected median OTN and DTN were 142 (112–177) min and 54 (40–69) min in the IVT+MT group, and 129 (106–170) min and 51 (41–67) min in the MT alone group.

Table 2 reports the baseline characteristics according to time delays of OTN; see online supplemental data table 1 for comparison according to DTN. Figure 1 depicts the distribution of time to treatment variables by randomization group.
Delay from onset (OTN)

We found no evidence that the effect of bridging IVT on functional independence was modified by the delay of OTN. The odds for functional independence in patients treated with alteplase plus thrombectomy versus thrombectomy alone numerically decreased by 0.76 (95% CI 0.45 to 1.30, p=0.32) per hour of OTN delay. Similar results were obtained when assuming a dichotomous effect (adjusted odds ratio (aOR) of >3 hours vs 0–3 hours 0.64, 95% CI 0.24 to 1.72, p=0.37), across quartiles (see figure 2) or when using linear splines. Models fitted best when OTN was included as a linear effect and consistent with the sensitivity analysis using the individual times to IVT bolus administration (see online supplemental table S2).

There was no significant interaction of OTN and bridging IVT assignment in terms of the safety outcomes or the pharmacological and technical efficacy (see table 3).

In-hospital delay (DTN)

We also found no evidence that the effect of bridging IVT on functional independence is modified by the in-hospital delay. No heterogeneity was observed, including when assuming a dichotomous effect of DTN (aOR of >1 hour vs 0–1 hour 1.37, 95% CI 0.74 to 2.53). Similarly, across quartiles, there was no interaction of DTN and IVT assignment in terms of the primary outcome.

The adjusted odds for a favorable mRS shift numerically increased by 1.88 (95% CI 0.91 to 3.88) per 1 hour decrease of DTN resulting in a significant interaction with IVT assignment (aOR 0.36, 95% CI 0.13 to 0.99, p=0.047). In parallel, the mortality analysis (aOR 17.8, 95% CI 1.8 to 174.9, p for interaction 0.011) provided some evidence for a more beneficial effect of IVT when in-hospital delays were short (table 3).

DISCUSSION

This post-hoc analysis of the SWIFT-DIRECT trial found no clear evidence that patients with short OTN benefited more from bridging IVT. Exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT associated with shorter in-hospital delays.

For patients qualifying for IVT without MT, earlier treatment is associated with increased proportional benefits, with potential harms only evident beyond the established 4.5 hour limit.17 For patients who received bridging IVT before MT, the randomized controlled trials on this topic have reported no clear subgroup effects related to the time from symptom onset to randomization. Also, our nuanced sub-analysis of the randomized SWIFT-DIRECT trial detected no heterogeneity of treatment effect. Our model fit was best when OTN was handled as a continuous variable (ie, assumption of a linear effect). The point estimate (aOR 0.76, 95% CI 0.43 to 1.30) crossed the zero effect line indicating potential harm at around 4.5 hour limit.17 For patients who received bridging IVT before MT, the randomized controlled trials on this topic have reported no clear subgroup effects related to the time from symptom onset to randomization. Also, our nuanced sub-analysis of the randomized SWIFT-DIRECT trial detected no heterogeneity of treatment effect. Our model fit was best when OTN was handled as a continuous variable (ie, assumption of a linear effect). The point estimate (aOR 0.76, 95% CI 0.43 to 1.30) crossed the zero effect line indicating potential harm at around 4.5 hour limit.17

*The aOR indicates the interaction term of assignment to IVT+MT (as compared with MT alone) and 1 hour delay and group assignment assuming a linear effect. The OR for MT alone gives the change in the odds for functional independence per additional hour delay. The interaction refers to change in the treatment effect (odds for functional independence of IVT plus MT vs MT alone) per additional hour delay. The interaction 0.011) provided some evidence for a more beneficial effect of IVT when in-hospital delays were short (table 3).

Table 3 Interaction analysis regarding primary and secondary outcomes according to overall and in-hospital delays

<table>
<thead>
<tr>
<th>Time</th>
<th>Outcome category</th>
<th>Outcome</th>
<th>aOR for MT alone per 1 hour delay with 95% CI</th>
<th>aOR of interaction per 1 hour delay with 95% CI*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset-to-needle</td>
<td>Efficacy</td>
<td>mRS 0–2 (primary), day 90</td>
<td>0.86, 0.60 to 1.23</td>
<td>0.76, 0.45 to 1.30</td>
</tr>
<tr>
<td>time:</td>
<td></td>
<td>mRS decrease (better outcome), day 90</td>
<td>0.82, 0.60 to 1.12</td>
<td>0.90, 0.58 to 1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mortality, day 90</td>
<td>1.57, 0.91 to 2.70</td>
<td>0.98, 0.42 to 2.32</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
<td>Any ICH on 24hours imaging</td>
<td>1.35, 0.93 to 1.97</td>
<td>1.33, 0.78 to 2.27</td>
</tr>
<tr>
<td></td>
<td>Pharmacological</td>
<td>Symptomatic ICH on 24hours imaging</td>
<td>1.15, 0.42 to 3.17</td>
<td>0.66, 0.17 to 2.65</td>
</tr>
<tr>
<td></td>
<td>efficacy</td>
<td>Pre-interventional reperfusion success (cs-eTICI ≥2a)</td>
<td>0.99, 0.40 to 2.42</td>
<td>1.56, 0.54 to 4.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time-to-reperfusion</td>
<td>0.73, 0.60 to 0.89</td>
<td>1.24, 0.94 to 1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final reperfusion success (cs-eTICI ≥2b)</td>
<td>0.78, 0.44 to 1.37</td>
<td>1.04, 0.36 to 3.02</td>
</tr>
<tr>
<td>Door-to-needle</td>
<td>Efficacy</td>
<td>mRS 0–2 (primary), day 90</td>
<td>1.47, 0.60 to 3.56</td>
<td>0.48, 0.14 to 1.62</td>
</tr>
<tr>
<td>time:</td>
<td></td>
<td>mRS decrease (better outcome), day 90</td>
<td>1.88, 0.91 to 3.88</td>
<td>0.36, 0.13 to 0.99</td>
</tr>
<tr>
<td></td>
<td>Pharmacological</td>
<td>Mortality, day 90</td>
<td>0.11, 0.02 to 0.66</td>
<td>17.8, 1.8 to 174.9</td>
</tr>
<tr>
<td></td>
<td>efficacy</td>
<td>Any ICH on 24hours imaging</td>
<td>0.99, 0.40 to 2.43</td>
<td>0.95, 0.28 to 3.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Symptomatic ICH on 24hours imaging</td>
<td>0.73, 0.05 to 10.74</td>
<td>4.60, 0.19 to 114.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-interventional reperfusion success (cs-eTICI ≥2a)</td>
<td>2.26, 0.36 to 14.38</td>
<td>0.63, 0.07 to 6.06</td>
</tr>
<tr>
<td></td>
<td>Pharmacological</td>
<td>Time-to-reperfusion</td>
<td>0.40, 0.26 to 0.63</td>
<td>0.88, 0.47 to 1.64</td>
</tr>
<tr>
<td></td>
<td>efficacy</td>
<td>Final reperfusion success (cs-eTICI ≥2b)</td>
<td>1.69, 0.37 to 7.81</td>
<td>0.56, 0.05 to 6.83</td>
</tr>
</tbody>
</table>

*The aOR indicates the interaction term of assignment to IVT+MT (as compared with MT alone) and 1 hour delay and group assignment assuming a linear effect. The OR for MT alone gives the change in the odds for functional independence per additional hour delay. The interaction refers to change in the treatment effect (odds for functional independence of IVT plus MT vs MT alone) per additional hour delay. aOR, adjusted OR; cs-eTICI, cross-sectional expanded Thrombolysis In Cerebral Infarction; ICH, intracranial hemorrhage; IVT, intravenous thrombolysis; mRS, modified Rankin Scale; MT, mechanical thrombectomy.
be repeated in an individual patient meta-analysis of comparable trials on bridging IVT.

No interaction could be detected with the secondary safety outcomes, and pharmacological and technical efficacy. However, a sub-analysis of the DEVIT trial recently reported an association of bridging IVT with increased early reperfusion when MT was delayed more than approximately half an hour.20

Analysis of in-hospital delays revealed a potential heterogeneity of treatment effect of IVT regarding mortality and mRS shift analysis, with a larger proportional benefit seen when DTN was shorter. However, the credibility of those subgroup effects is unclear because of multiple testing and hence, this finding might be due to chance.21 Nevertheless, since the anticipated direction of the effect and the pathophysiology support such heterogeneity, we suggest a re-analysis in an individual patient meta-analysis of the trials mentioned above. In a bigger dataset, potentially relevant subgroups such as tandem lesions should be specifically addressed.22

The meta-analysis of the trials on MT22 also found a time-to-treatment interaction for in-hospital delays, but not for overall delays from symptom onset. Possible reasons include a stronger association of in-hospital delays with outcome, the time-reset effect of imaging-based inclusion,22 uncertain trustworthiness of pre-versus in-hospital time workflow information, and non-linear ischemic core growth over time.23-24

Strengths and limitations

Strengths include good overall data quality within the setting of the randomized prospective international multicenter SWIFT-DIRECT trial and a prespecified, deposited statistical analysis plan with defensive interpretation according to recommendations for subgroup analysis of randomized trials. Limitations are mainly related to the fact that the study was neither designed nor powered to detect an interaction effect—that is, assuming the observed correlations from the main study, odds ratios lower than 0.6 would be necessary to reach a power of 80%. Since imaging selection (ASPECTS) was used in the enrolled patients, the time effects observed are likely to be less pronounced than those that would occur in the overall population of patients with large-vessel occlusion in the absence of imaging selection.

CONCLUSIONS

This subgroup analysis found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering the low statistical power of this subgroup analysis, a clinically important effect could have been missed. Nevertheless, exploratory analysis regarding secondary clinical outcomes indicated a potentially favorable effect of IVT associated with shorter in-hospital delays. Until further evidence regarding potential heterogeneity of the IVT effect size before MT becomes available from individual patient meta-analysis of comparable trials, IVT should be given to eligible patients and neither OTN nor DTN should influence treatment decisions regarding bridging IVT.

Author affiliations

1Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
2University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
3CUZ, Bern, University of Bern, Bern, Switzerland
4Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
5Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
6Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
7Neuro Clinical Trial Unit, Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
8Division of Neuroradiology and Division of Neurosurgery, Departments of Medical Imaging and Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
9Department of Neuroradiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
10Department of Diagnostic and Interventional Neuroradiology, Centre Hospitalier Universitaire de Nantes, Nantes Université, Nantes, France
11Department of Neurology, Centre Hospitalier Universitaire de Nantes, Nantes Université, Nantes, France
12Department of Radiology, CHU Rouen, Rouen, France
13Department of Neurology, CHU Rouen, Rouen, France
14Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy, Université de Lorraine, INSERM U1254, Nancy, France
15Department of Neurology, Stroke Unit, CHRU-Nancy, Université de Lorraine, INSERM U1116, Nancy, France
16Department of Neurology, Klinikum Nürnberg, Nürnberg, Germany
17Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
18Department of Neurology, CHU Caen Normandie, University Caen Normandie, INSERM U1237, Caen, France
19Department of Neuroradiology, CHU Caen Normandie, University Caen Normandie, INSERM U1237, Caen, France
20Department of Vascular Neurology, Hospices Civils de Lyon, Lyon, France
21Department of Neurology, St George’s University Hospital NHS Foundation Trust, London, UK
22Department of Interventional and Diagnostic Neuroradiology, CHU Bordeaux, University of Bordeaux, Bordeaux, France
23Stroke Unit, CHU Bordeaux, University of Bordeaux, Bordeaux, France
24Department of Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
25Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
26Department of Stroke and Diagnostic and Interventional Neuroradiology, Foch Hospital, Suresnes, France
27Stroke Unit, Department of Neurology, Hospital Vall d’Hebron, Barcelona, Spain
28Interventional Neuroradiology, Department of Radiology, Hospital Vall d’Hebron, Barcelona, Spain
29Department of Neuroradiology, CHU Limoges, Limoges, France
30Department of Neurology, CHU Reims, Reims, France
31Department of Neuroradiology, CHU Reims, Reims, France
32Service of Interventional and Diagnostic Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
33Department of Neurology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
34Department of Diagnostic and Interventional Neuroradiology, Tours University Hospital, Tours, France
35Stroke Unit, Department of Neurosciences, University Hospital Germans Trias i Pujol, Barcelona, Spain
36Department of Interventional Neuroradiology, Strasbourg University Hospitals, Strasbourg, France
37Department of Neurology, Lille University Hospital, Lille, France
38Department of Neurology, University Hospital Zurich, Zurich, Switzerland
39Department of Neurology, Cereeno, Center for Neurology and Rehabilitation, Vitznau, Switzerland
40Department of Interventional Neuroradiology, Fondation Rothschild Hospital, Paris, France
41Department of Neuroradiology, Brest University Hospital, Brest, France
42Department of Neurology, University Health Network - Toronto Western Hospital - University of Toronto, Toronto, Ontario, Canada
43Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
44Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
45Vanderbilt Cerebrovascular Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
46School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
47Department of Intracranial Endovascular Therapy, Alfred-Krupp Krankenhaus, Essen, Germany
48Department of Neuroradiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
49Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Essen, Germany
50Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
51Department of Neurology, University Hospital Basel, Basel, Switzerland
52Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine, UCLA, University of California, Los Angeles, California, USA

Correction notice This article has been corrected since it was first published. The open access licence has been updated to CC BY 17th May 2023.

Ischemic stroke

Twitter Thomas R Meinell @TotoMynell, Johannes Kaesmacher @CheesemakerMD, Vitor Mendes Pereira @VtorMendesPer1, Raoul Pop @RaoulPop25 and Urs Fischer @FishingNeurons

Acknowledgements Academic investigators designed SWIFT-DIRECT. Susan Kaplan provided English language support.

Collaborators
List of SWIFT DIRECT Study Personnel, Collaborators and Affiliations Principal Investigators: Urs Fischer, MD, MSC1, Jan Grailla MD, MSC3 Steering Board Rene Chapot MD4, Christoph Cognard MD5, Urs Fischer MD MSC1,2, Anthony Furlan MD6, Michael T Froehle MD PhD7, Jan Grailla MD MSC3, Vitor Mendes-Pereira MD PhD8, Jeffrey L Saver MD9, Adran H. Siddiqui MD PhD10, Daniel Strbian MD PhD11, Martin Wiesmann MD12 Study Management Sandro Deppeler MSC13, Patricia Plattner MSC13, Melanie Schmidhalter MSC13, Jenny Bessen MSC13, Stefanie Lerch PhD13 PhD Student Johannes Kaesmacher MD3 Independent trial statisticians Lukas Bultkoffer PhD14, Andreas Umache MD PhD14 study monitors Leonard von Meyenn PhD14, Martina Zimmermann PhD14 Data Safety Monitoring Board Bruce Campbell MD Phd15, Tim Friede PhD16, Rüdiger von Kummer MD17 Clinical Event Committee Leoni Bonati MD2, Hans Christoph Diener MD18, Paolo Machi MD19, Zsolt Kulcsar MD Phd20 Imaging Core Lab David R. Liebeskind MD9 Collaborators Angelika Alonso MD21, Caroline Arquinn MD22, Xavier Barreau MD23, Rémy Beaudeau MD Phd24, Daniel Behme MD25, Tobias Boekh-Behrens MD26, Christian Boehme MD Phd27, Marta Boix MSC28, Grégoire Boulouis MD29, Nicolas Bricout MD30, Nicolas Broc MD31, Carlo W. Cereda MD32, Emmanuel Chabert MD33, Tae-Hee Cho MD Phd34, Alessandro Cianfloni MD35,35, Vincent Costalat MD Phd36, Christian Denier MD Phd37, Frederico Di Maria MD38, Richard du Mesnil de Rochemont MD39, Patricia Fearon MD40, Anna Ferrier MD41, Sebastian Fischer MD42, Maude Gauberti MD43, Marie Gaudron MD44, Laetitia Gimenez MD45, Christoph Glöbus MD Phd46, Michael Göltler MD Phd47, Mayank Goyal MD Phd48, Ruediger Hilker Rohr Roro49, Michael D. Hill MD50, Vito Hua MD51, Louis Humelet MD52, Emilia Humpl MD53, Simon Jung MD54, Simon Jung MD55, Michael E. Kelly MD Phd55, Ilka Kleinber MD56, Michael Knollbach MD57, Nedeltev Kraesen MD51,57, Lars Udo Krause MD58, Kimmo Lappalainen MD59, Margaux Lefebvre MD60, Joe Leyon MD MBA61, Liang Liao MD62, Jean-Sebastien Liegey MD63, Christian Loehr MD64, Patrick Pietr MD65, Sanianna Nannoni MD65, Phd66, Patrick Nicholson MD, Lorena Nico MD66, Michael Obadia MD67, Julien Ognard MD Phd68, Ayokunle Olungbeni MD Bmb661, Jean-Marc Olivot MD Phd69, Simon Escalard MD70, Marco Pasi Phd71, Lisa Peeling MD72, Jane Perez MD73, Sebastia Remollo MD74, Luca Remonda MD75,35, Ian Rennie MD76, Manuel Requena MD77, Alexander Riabikin12, Roberto Riva MD78, Aymen Rouach MD Phd79, Andrea Rosi MD19, Marta Rubiera MD80, Laurent Speille MD Phd81, Marlenia Schneider MD82, Joanna D. Schamsa Phd83, Timlan Schubert20,84, Jörg B Schlüs MD85, Mohammed Siddiqui MD72, Sébastien Soize MD MSc8, Michael Sonneberger MD88, Emmanuel Touze MD Phd89, Aude Trquent MD90, Guillaume Turc MD Phd91, Lucy-Vieira MD92, Ben Hanssen Waagh MD Phd93, Judith N. Wagner MD94, Katrin Wasser MD95, Holger Wenz MD96, David Weisenburger Ld38, Fritz Wodarg MD53, Valerie Wolfl Phd97, Silke Wunderlich MD98Affiliations 1 Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland. 2 Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland. 3 University Institute of Diagistic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland. 4 Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany. 5 Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France. 6 School of Medicine, Case Western Reserve University, Cleveland, OH, USA. 7 Vanderbilt Cerebrovascular Program, Vanderbilt University Hospital, Nashville, USA. 8 Division of Neuroradiology and Division of Neurosurgery, Departments of Medical Imaging and Surgery, University of Bern, Switzerland. 9 Department of Neurology, University of Bern, Switzerland. 10 Department of Neuroradiology, University Hospital Berlin, Charité, Berlin, Germany. 11 Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany. 12 Institute and Policlinic of Diagnostic and Interventional Neuroradiology, Universityklinikum Dresden, Dresden, Germany. 13 Department of Neuroepidemiology, Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), Essen, Germany. 14 Department of Neuroradiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland. 15 Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland. 16 Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. 17 Department of Neurology, Montpellier University Hospital, Montpellier, France. 18 Department of Interventional Neuroradiology, University Hospital Strasbourg, Strasbourg, France. 19 Clinic for Neuroradiology, University Medical Center Magdeburg, Magdeburg, Germany. 20 Department of Neuroradiology, School of Medicine, University Hospital Rechts der Isar of the Technical University Munich, Munich, Germany. 21 Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria. 22 Department of Neurosciences, University Hospital Germans Trias i Pujol, Barcelona, Spain. 23 Department of Interventional Neuroradiology, University Hospital Aarau, Aarau, Switzerland. 24 Department of Interventional Neuroradiology, Royal Victoria Hospital, Montreal, Canada.
Belfast, UK. 77 Department of Interventional Neuroradiology, Hospital Vall d’Hebron, Barcelona, Spain. 78 Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France. 79 Department of Neuroradiology, University Hospital of Limoges, Limoges, France. 80 Department of Neuroradiology, Hospital Vall d’Hebron, Barcelona, Spain. 81 Department of Neuroradiology, Hospital Bicêtre, APHP, Paris Sud Université, Paris, France. 82 Department of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany 83 Department of Neuroradiology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada. 84 Clinical Neurocenter, University Hospital of Zürich, Zürich, Switzerland. 85 Department of Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany. 86 JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH, RWTH Aachen University, Aachen, Germany. 87 Department of Neuroradiology, CHU Reims, Reims, France. 88 Department of Neuroradiology, Kepler University Hospital, Linz, Austria. 89 Department of Neuroradiology, CHU Caen Normandie, INSERM U1237, University Caen Normandie, Caen, France 90 Department of Neuroradiology, CHU Rouen, Rouen, France. 91 Department of Neuroradiology, GHU Paris Psychiatrie et Neurosciences & Université de Paris & INSERM U1266 & FHU NeuroVasc, Paris, France. 92 Montreal Neurological Hospital, McGill University Health Center, Montreal, Canada. 93 Department of neuroradiology, GHU Paris Psychiatrie et Neurosciences & Université de Paris & INSERM U1266 & FHU NeuroVasc, Paris, France. 94 Department of Neuroradiology, Kepler University Hospital, Linz, Austria. 95 Department of Radiology and Nuclear Medicine, Kantonsspital St Gallen, Sankt Gallen, Switzerland. 96 Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. 97 Department of Neurology, University Hospital Strasbourg, Strasbourg, France. 98 Department of Neurology, School of Medicine, University Hospital Rechts der Isar of the Technical University Munich, Munich, Germany.

Contributors TM, JK, LB, JG and UF contributed to conception and design of the study, analysis of data and drafting the text. TRM, JK and LB performed the statistical analysis and prepared the figures. All co-authors contributed to acquisition of data, provided significant input to interpretation of data and reviewed the paper and revised it for important intellectual content. UF and JG are the guarantors of this work.

Funding Medtronic supported the study with an unrestricted grant to the University of Bern. Medtronic had no involvement in the final design, data analysis or interpretation. The University Hospital of Bern provided additional funding.

Competing interests MA reports honoraria for lectures from AstraZeneca, Bayer, Covidien, Medtronic and Sanofi; Participation on Scientific Advisory Boards of Amgen, Bayer, BMS, Daiichi Sankyo, Medtronic, and Pfizer. CC reports consulting fees from Medtronic (payment made to CC). EC reports grants from the Swiss Heart Foundation and Swiss National Science Foundation, not related to present study. HCD reports that in the last 3 years, he received honoraria for participation in clinical trials, contribution to advisory boards or oral presentations from: Abbott, BMS, Boehringer Ingelheim, Daiichi Sankyo, Novo-Nordisk, Pfizer, Portola and WebMD Global. EK received financial support for research projects. HCD also received research grants from the German Research Council (DFG) and German Ministry of Education and Research (BMBF). HCD serves as editor of Neurologie up2date, Info Neurologie & Psychiatrie, Arzneimitteltherapie, as co-editor of Cephalalgia and on the editorial board of Lancet Neurology and Drugs. MTIF reports research grants from Medtronic, Siemens, Genentech, Idorsia, and Viasalic; consulting fees from Genentech, BALT USA, Cerenevus, and Oculus Imaging; participation on a Data Safety Monitoring Board or Advisory Board for BALT USA, Jacobs Institute, and Imperative Care. UF reports financial support for the present study from Medtronic. SWIFT DIRECT is a investigator-initiated trial. The sponsor was not involved in the final study design, protocol, conduct, evaluation of results or preparation of the manuscript. UF also reports research grants from Medtronic BEYOND SWIFT registry, Swiss National Science Foundation, Swiss Heart Foundation; consulting fees from Medtronic, Stryker and CSL Behring (fees paid to institution); membership of a Data Safety Monitoring Board or Advisory Board for the IN EXTREMIS trial and TITAN trial and Portola (Alexion) Advisory board (fees paid to institution); and Vice Presidency of the Swiss Neurological Society. UF is a member of the editorial board of JNIS. JG reports a Swiss National Funds (SNF) grant for MRI in stroke. JK reports financial support of Medtronic for the BEYOND SWIFT Registry (fees paid to institution); research grant from the Swiss National Science Foundation supporting the TECNO trial (fees paid to institution); Swiss Academy of Medical Sciences research grant supporting MRI research (fees paid to institution); Swiss Heart Foundation research grant supporting cardiac MRI in the etiological workup of stroke patients (fees paid to institution). AL reports grants from the University of Zurich, the LOOP Zurich, and P&K Führinger Foundation; consulting fees from Bayer AG; and a lecture honorarium from Moleca Pharma Singapore. DLS reports consulting fees from Cerenevus, Genentech, Medtronic, Stryker, Rapid Medical as imaging core lab. GM reports consulting fees from Stryker Neurovascular; paid lectures for Medtronic and Microvention Europe. PM reports research funding (fees paid to institution) from the Swiss National Science Foundation, Swiss Heart Foundation and Medtronic Research Grant. PM reports grants from the Swiss National Science Foundation; Consulting fees Medtronic, Stryker; payment or honoraria from Medtronic, Stryker; participation on a Data Safety Monitoring Board or Advisory Board of MicroVenton. ON reports funding from a Stryker Research grant; payment or honoraria for Phenox lecture and Stryker lecture. WH reports grants from the Swiss National Funds (SNF) grant for MRI in stroke. TRM, Meinel et al. J NeuroIntervent Surg 2023;15:e102-e110. doi:10.1136/neurintsurg-2022-019207 e109

Ischemic stroke

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by Bern Ethics Committee KEK-2021. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. De-identified data, together with a data dictionary, will be made accessible after ethics clearance and upon submission of a reasonable request with a research plan to the corresponding author.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Ischemic stroke

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/

ORCID IDs
Thomas R Meinel http://orcid.org/0000-0002-0647-9273
Johannes Kaemischer http://orcid.org/0000-0002-9177-2289
Christophe Cognard http://orcid.org/0000-0003-4287-2627
Vitor Mendes Pereira http://orcid.org/0000-0002-6804-3985
Jean Darcourt http://orcid.org/0000-0003-1620-4449
Chrysanthi Papagiannaki http://orcid.org/0000-0002-9473-9644
Sébastien Richard http://orcid.org/0000-0002-0945-5656
Laura Mceachtouff http://orcid.org/0000-0001-9165-5763
Gautier Marnat http://orcid.org/0000-0002-7611-7753
Omid Nikoubashman http://orcid.org/0000-0002-2055-4217
Manuel Requena http://orcid.org/0000-0002-5671-6484
Alvaro Garcia-Torrel http://orcid.org/0000-0003-3633-3002
Paolo Pagano http://orcid.org/0000-0001-5821-2653
Guiluame Saliju http://orcid.org/0000-0003-3822-7976
Kevin Janot http://orcid.org/0000-0002-7305-3125
Raoul Pop http://orcid.org/0000-0003-4417-1496
Martin Wiesmann http://orcid.org/0000-0002-8261-5513
David Liebeskind http://orcid.org/0000-0002-5109-8736
Jeffrey L Saver http://orcid.org/0000-0001-9141-2251

REFERENCES