Original research

Time to treatment with bridging intravenous alteplase before endovascular treatment: subanalysis of the randomized controlled SWIFT-DIRECT trial

Thomas R Meinel,1 Johannes Kaesmacher2, Lukas Buetikofer3, Daniel Strbian4, Omer Faruk Eker,5 Christophe Cognard6, Pasquale Mordasini2, Sandro Deppeler,7 Vitor Mendes Pereira8, Jean François Albucher9, Jean Darcourt1, Romain Bourcier,10 Benoit Guillou,11 Chrysanthi Papagiannaki12, Guillaume Costentin13, Gerli Sibolt4, Silja Räty4, Benjamin Gory,14 Sébastien Richard15, Jan Liman16, Marielle Ernst17, Marion Boulanger,18 Charlotte Barbier,19 Laura Mechtaouf20, Liqun Zhang21, Gaultier Marnat22, Igor Sibon,23 Omid Nikoubashman24, Arno Reich,25 Arturo Consoli,26 David Weisenburger,26 Manuel Requena27,28 Alvaro Garcia-Tornel27, Suzana Saleme,29 Solène Moulin30, Paolo Pagano31, Guillaume Saliou32, Emmanuel Carrera,33 Kevin Janot34, Marti Boix35, Raoul Pop36, Lucie Della Schiava37, Andreas Luft38,39 Michel Piotin,40 Jean Christophe Gentric,41 Aleksandra Pikula,42 Waltraud Pfeilschifter,43 Marcel Arnold,1 Adnan Siddiqui,44 Michael T Froehler,45 Anthony J Furlan,46 René Chapot,47 Martin Wiesmann24, Paolo Machi,48 Hans-Christoph Dienen,49 Zsolt Kulcsar,50 Leo Bonati,51 Claudio Bassetti,1 Simon Escalard,40 David Liebeskind9,52 Jeffrey L Saver52, Urs Fischer1,51 Jan Gralla2, on behalf of the SWIFT-DIRECT investigators

ABSTRACT

Background We hypothesized that treatment delays might be an effect modifier regarding risks and benefits of intravenous thrombolysis (IVT) before mechanical thrombectomy (MT).

Methods We used the dataset of the SWIFT-DIRECT trial, which randomized 408 patients to IVT+MT or MT alone. Potential interactions between assignment to IVT+MT and expected time from onset-to-needle (OTN) as well as expected time from door-to-needle (DTN) were included in regression models. The primary outcome was functional independence (modified Rankin Scale (mRS) 0–2) at 3 months. Secondary outcomes included mRS shift, mortality, recanalization rates, and (symptomatic) intracranial hemorrhage at 24 hours.

Results We included 408 patients (IVT+MT 207, MT 201, median age 72 years (IQR 64–81), 209 (51.2%) female). The expected median OTN and DTN were 142 min and 54 min in the IVT+MT group and 129 min and 51 min in the MT alone group. Overall, there was no significant interaction between OTN and bridging IVT assignment regarding either the functional (adjusted OR (aOR) 0.76, 95% CI 0.45 to 1.30) and safety outcomes or the recanalization rates. Analysis of in-hospital delays showed no significant interaction between DTN and bridging IVT assignment regarding the dichotomized functional outcome (aOR 0.48, 95% CI 0.14 to 1.62),

WHAT IS ALREADY KNOWN ON THIS TOPIC
⇒ Overall, the randomized controlled trials on bridging thrombolysis before mechanical thrombectomy did not report any clear subgroup effects related to the time from symptom onset to randomization.

WHAT THIS STUDY ADDS
⇒ This study found no clear evidence that patients with short onset-to-needle times benefited more from bridging thrombolysis. Exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT associated with shorter in-hospital delays.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY
⇒ This study sets methodological benchmarks for analyzing the heterogeneity of bridging thrombolysis effect size before mechanical thrombectomy in a meta-analysis of all randomized controlled trials on this topic. Neither onset-to-needle times nor door-to-needle times should influence treatment decisions regarding bridging thrombolysis until this meta-analysis is available.

but the shift and mortality analyses suggested a greater benefit of IVT when in-hospital delays were short.

Conclusions We found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering its low power, this subgroup analysis could have missed a clinically important effect, and exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT with shorter in-hospital delays. Heterogeneity of the IVT effect size before MT should be further analyzed in individual patient meta-analysis of comparable trials.

Trial registration number URL: https://www.clinicaltrials.gov; Unique identifier: NCT03192332

INTRODUCTION

Whether mechanical thrombectomy (MT) alone can be regarded as equally effective as MT combined with bridging intravenous thrombolysis (IVT+MT) for patients admitted directly to centers with endovascular treatment capability remains controversial.1 2 Two trials in Chinese patients demonstrated non-inferiority of MT alone,3 4 whereas three other trials failed to show non-inferiority.5–7 All these trials used generous non-inferiority margins, which are considerably less conservative than the proposed minimal clinically important difference or the margin considered to constitute reasonable comparability.8 The expedited recommendation of the European Stroke Organisation currently advises that patients admitted to MT-capable centers should undergo IVT+MT if eligible for both treatments.9

None of the individual subgroup analyses of these trials showed a significant difference regarding time from onset of symptoms to randomization (OTR). However, the point estimates indicated a potential time-dependent relationship between bridging IVT and functional outcome (table 1). In unselected stroke patients, the efficacy of IVT is known to be highly time-dependent.10 Therefore, we hypothesized that treatment delays might be an effect modifier regarding risks and benefits of IVT in patients enrolled in the SWIFT-DIRECT trial and that a more beneficial effect of IVT would be seen in patients with shorter treatment delays.

This analysis aimed to assess a potential treatment effect heterogeneity of IVT+MT versus MT alone according to the overall delay (onset-to-needle, OTN) and in-hospital delays (door-to-needle, DTN) in terms of functional outcome, technical efficacy and safety outcomes. Additionally, if a heterogeneity of treatment effect was found, we intended to characterize the extent to which modification occurs and the time period during which adding IVT might confer significant benefits.

METHODS

Reporting, data sharing, ethics

For this post-hoc sub-analysis of the randomized controlled SWIFT-DIRECT study (https://clinicaltrials.gov/NCT03192332), we followed the CONSORT (Consolidated Standards of Reporting Trials) guidelines. The SWIFT-DIRECT dataset is not publicly available. However, de-identified data, together with a data dictionary, will be made accessible after ethics clearance and on submission of a reasonable request with a research plan to the corresponding author. Written informed consent was obtained from patients or their next of kin, with selected countries allowing delayed informed consent due to emergency circumstances. Approval was obtained from all relevant local ethics committees (central ethics Bern, ID 2017–00974).

Study design and patients

SWIFT-DIRECT was an international, multicenter, randomized, open label, blinded endpoint (PROBE) trial assessing the non-inferiority of MT alone versus IVT+MT in patients presenting directly to one of 48 participating MT-capable stroke centers in Europe and Canada. The trial protocol11 and main results, including details of the methodology, have already been published.7 Patients were eligible if they had imaging-confirmed occlusion of the intracranial carotid artery and/or the first segment (M1) of the middle cerebral artery; were eligible to receive alteplase within 4.5 hours after they were last seen well; could undergo MT within 75 min of randomization; and had severe neurological deficits, defined as a National Institutes of Health Stroke Scale (NIHSS) score of ≥5. Patients with advanced dementia, significant pre-existing disabilities, and early severe tissue damage (Alberta Stroke Programme Early CT Score (ASPECTS) ≤5) were excluded. A total of 408 patients fulfilling those criteria were randomized (1:1 ratio) to undergo MT alone or IVT+MT (intravenous alteplase, 0.9 mg/kg of body weight). We included all patients in this post-hoc analysis.

Time definitions

The goal of our study was to assess whether time to treatment was an effect modifier—that is, it would have an impact on the effect of IVT plus MT versus MT alone—with the idea that, depending on the time to treatment, additional IVT might show a benefit compared with MT alone. The time interval analyzed for the overall time delay was hence the expected OTN. This was defined as time from symptom onset or last known well to expected IVT bolus. It was calculated by adding the mean randomization-to-bolus-time to the onset-to-randomization

Table 1 Subgroup analysis of published randomized controlled trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Source</th>
<th>Outcome</th>
<th>Subgroup</th>
<th>acOR/aOR point estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRCLEAN-NoIV5</td>
<td>online supplemental f53</td>
<td>Ordinal mRS</td>
<td>OTR 13–77 min</td>
<td>0.75 (0.43 to 1.31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR 77–124 min</td>
<td>0.67 (0.39 to 1.15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR 124–734</td>
<td>1.00 (0.58 to 1.73)</td>
</tr>
<tr>
<td>DIRECT-MT18</td>
<td>online supplemental f54</td>
<td>Ordinal mRS</td>
<td>OTR ≤125 min</td>
<td>0.93 (0.54 to 1.61)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR 126–171 min</td>
<td>0.94 (0.54 to 1.64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR 172–210 min</td>
<td>1.28 (0.74 to 2.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR ≥210 min</td>
<td>1.38 (0.79 to 2.40)</td>
</tr>
<tr>
<td>DEVT7</td>
<td>online supplemental f6</td>
<td>mRS 0–2</td>
<td>OTR <169 min</td>
<td>0.97 (0.41 to 2.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR ≥169 min</td>
<td>2.25 (0.88 to 6.05)</td>
</tr>
<tr>
<td>SKIP5</td>
<td>Main paper f3</td>
<td>mRS 0–2</td>
<td>OTR ≤120 min</td>
<td>0.77 (0.33 to 1.78)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTR >120 min</td>
<td>1.33 (0.61 to 2.87)</td>
</tr>
</tbody>
</table>

In all trials a higher aOR/acOR favors withholding bridging IVT, while a lower aOR/acOR favors administering IVT before MT. acOR, adjusted common OR; aOR, adjusted OR; IVT, intravenous thrombolysis; mRS, modified Rankin Scale; OTR, onset-to-randomization time.
Ischemic stroke value, for each patient in both the MT alone and the IVT+MT treatment groups.

For the in-hospital delay, the expected DTN was analyzed. This was defined as the time from arrival at the emergency department of the study hospital to the expected IVT bolus. It was calculated by adding to the door-to-randomization value, for each patient in both the MT alone and the IVT+MT groups, the study mean for the randomization to bolus time. Those

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Selected baseline characteristics according to time from symptom onset to needle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time from symptom onset to needle</td>
</tr>
<tr>
<td></td>
<td>0–3 hours (n=316)</td>
</tr>
<tr>
<td>N*</td>
<td>N*</td>
</tr>
<tr>
<td>Age at inclusion (years), median (IQR)</td>
<td>316</td>
</tr>
<tr>
<td>Female sex, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>NIHSS, median (IQR)</td>
<td>316</td>
</tr>
<tr>
<td>Pre-stroke mRS, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>0</td>
<td>269 (85.1%)</td>
</tr>
<tr>
<td>1</td>
<td>46 (14.6%)</td>
</tr>
<tr>
<td>4</td>
<td>1 (0.3%)</td>
</tr>
<tr>
<td>Weight (kg), median (IQR)</td>
<td>293</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg), median (IQR)</td>
<td>312</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg), median (IQR)</td>
<td>310</td>
</tr>
<tr>
<td>Heart rate (beats/min), median (IQR)</td>
<td>309</td>
</tr>
<tr>
<td>Previous ischemic stroke, no. (%)</td>
<td>304</td>
</tr>
<tr>
<td>Previous transient ischemic attack, no. (%)</td>
<td>300</td>
</tr>
<tr>
<td>History of hypertension, no. (%)</td>
<td>306</td>
</tr>
<tr>
<td>History of atrial fibrillation, no. (%)</td>
<td>299</td>
</tr>
<tr>
<td>History of hypercholesterolemia, no. (%)</td>
<td>298</td>
</tr>
<tr>
<td>Prior intracerebral hemorrhage, no. (%)</td>
<td>307</td>
</tr>
<tr>
<td>Prior myocardial infarction, no. (%)</td>
<td>301</td>
</tr>
<tr>
<td>Warfarin or other anticoagulant, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>Aspirin, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>Statin or other lipid lowering agent, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>Blood glucose level (mmol/L), median (IQR)</td>
<td>303</td>
</tr>
<tr>
<td>INR, median (IQR)</td>
<td>253</td>
</tr>
<tr>
<td>Platelet count (<10^6/L), median (IQR)</td>
<td>314</td>
</tr>
<tr>
<td>Hemoglobin (g/L), median (IQR)</td>
<td>316</td>
</tr>
<tr>
<td>Glomerular filtration rate (mL/min), median (IQR)</td>
<td>316</td>
</tr>
<tr>
<td>Baseline imaging, no. (%)</td>
<td>316</td>
</tr>
<tr>
<td>CT</td>
<td>177 (56.0%)</td>
</tr>
<tr>
<td>MRI</td>
<td>137 (43.4%)</td>
</tr>
<tr>
<td>Both</td>
<td>2 (0.6%)</td>
</tr>
<tr>
<td>ASPECTS (core lab), median (IQR)</td>
<td>315</td>
</tr>
<tr>
<td>Baseline intracranial occlusion site, no. (%)</td>
<td>316</td>
</tr>
</tbody>
</table>

For one patient the randomization date was interpolated. ED, emergency department.

Figure 1 Distribution of time to treatment variables by randomization group. The median expected onset-to-needle time was 135 min (IQR 107–176) and the median expected door-to-needle time 53 min (IQR 40–69), without significant differences between both arms. The expected times were calculated as specified in the methods. For one patient the randomization date was interpolated. ED, emergency department.
somewhat artificial time intervals were chosen since they represent the clinical scenario outside randomized controlled trials better than onset-to-randomization and door-to-randomization times. They are therefore easier to interpret and applicable to stroke centers. The study mean of DTN time was used due to the small sample sizes at individual centers and because there was little variation across sites. As a post-hoc sensitivity analysis, we used the individual time to IVT bolus administration for patients who received this treatment.

Outcomes
Detailed definitions are available in the statistical analysis plan that was finalized and deposited before the analysis. The primary endpoint was functional independence, defined as modified Rankin Scale (mRS) ≤2 at 90 days. Secondary outcomes included mRS shift analysis, all-cause mortality, and time-to-reperfusion defined as expanded Thrombolysis In Cerebral Infarction (eTICI ≥2B). We also analyzed pharmacological efficacy (pre-interventional cross-sectional eTICI ≥2a (cs-eTICI), technical efficacy (eTICI ≥2b following device use) and safety outcomes (any and symptomatic intracranial hemorrhage, with the latter defined as ≥4 points worsening on the NIHSS within 24 hours).

Statistical analysis
An independent statistician (LB) organized, cleaned and analyzed the data according to the prespecified statistical analysis plan (see the online supplemental material). The intention-to-treat population was analyzed for a potential time- and IVT-arm assignment interaction by comparing the outcomes in the IVT arm to the outcomes in the no IVT arm. Participant characteristics at randomization by time intervals from onset/last-seen-well to randomization were described using medians with IQR for continuous variables and proportions for discrete variables including all variables employed in any subsequent model.

The interaction was analyzed using logistic, linear or flexible parametric survival models for binary, continuous or time-to-event outcomes, respectively. For rare binary outcome, penalized maximum likelihood logistic regression (Firth method) was used. For the primary analysis, we analyzed the interaction term of the time interval (continuous variable)*IVT assignment. A linear relationship was used as default, but more flexible approaches (ie, fractional polynomials and linear splines) were also considered. For a secondary analysis, predefined time cutoffs were used with the rationale of the ‘golden hour’ for IVT (OTN 0–60 min vs 61–270 min), the Food and Drug Administration label for alteplase (0–180 min vs 181–270 min), and according to quartiles of OTN. Models were compared using Akaike and Bayesian information criteria. Interaction terms are reported with 95% confidence intervals (95% CI) and p values. Interpretation of p values of the interaction was based on the recommendations of the Instrument for assessing the Credibility of Effect Modification Analyses (ICEMAN) tool.

Models were adjusted by the binary stratification variables and sex. Further covariate adjustments for baseline differences between early and late presenting patients were considered.

RESULTS
Cohort characteristics
Between November 2017 and May 2021, 423 patients at 42 centers were randomized and 15 patients were excluded after randomization. Altogether, 201 patients were assigned to MT alone and 207 to IVT+MT. The allocated intervention was received by 402/408 patients with three crossovers in each treatment arm. Data completeness was almost perfect for mRS (one missing) and >95% for all other outcomes (see online supplemental figure S1 for the CONSORT flow-chart). The median age was 72 years (IQR 64–81), 209 (51.2%) were female, and the median NIHSS was 17 (13–20). The median OTN was 135 min (IQR 107–176) and the median DTN was 53 min (IQR 40–69). The expected median OTN and DTN were 142 (112–177) min and 54 (40–69) min in the IVT+MT group, and 129 (106–170) min and 51 (41–67) min in the MT alone group.

Table 2 reports the baseline characteristics according to time delays of OTN; see online supplemental data table 1 for comparison according to DTN. Figure 1 depicts the distribution of time to treatment variables by randomization group.

Delay from onset (OTN)
We found no evidence that the effect of bridging IVT on functional independence was modified by the delay of OTN. The odds for functional independence in patients treated with alteplase plus thrombectomy versus thrombectomy alone numerically
decreased by 0.76 (95% CI 0.45 to 1.30, p=0.32) per hour of OTN delay. Similar results were obtained when assuming a dichotomous effect (adjusted odds ratio (aOR) of >3 hours vs 0–3 hours 0.64, 95% CI 0.24 to 1.72, p=0.37), across quartiles (see figure 2) or when using linear splines. Models fitted best when OTN was included as a linear effect and consistent with the sensitivity analysis using the individual times to IVT bolus administration (see online supplemental table S2).

There was no significant interaction of OTN and bridging IVT assignment in terms of the safety outcomes or the pharmacological and technical efficacy (see table 3).

DISCUSSION

This post-hoc analysis of the SWIFT-DIRECT trial found no clear evidence that patients with short OTN benefited more from bridging IVT. Exploratory analysis of secondary clinical outcomes indicated a potentially favorable effect of IVT associated with shorter in-hospital delays.

For patients qualifying for IVT without MT, earlier treatment is associated with increased proportional benefits, with potential harms only evident beyond the established 4.5 hour limit. For patients who received bridging IVT before MT, the randomized controlled trials on this topic have reported no clear subgroup effects related to the time from symptom onset to randomization. Also, our nuanced sub-analysis of the randomized SWIFT-DIRECT trial detected no interaction of treatment effect. Our model fit was best when OTN was handled as a continuous variable (ie, assumption of a linear effect). The point estimate (aOR 0.76, 95% CI 0.45 to 1.30) crossed the zero effect line indicating potential harm at around 4 hours after symptom onset for the dichotomized functional independence and beyond 4 hours for the mRS shift analysis (aOR 0.90, 95% CI 0.58 to 1.39). Nevertheless, given the point estimates of all trials on this topic, it is possible that we missed a clinically important effect. Hence, this analysis should be repeated in an individual patient meta-analysis of comparable trials on bridging IVT.

Table 3 Interaction analysis regarding primary and secondary outcomes according to overall and in-hospital delays

<table>
<thead>
<tr>
<th>Time</th>
<th>Outcome category</th>
<th>Outcome</th>
<th>aOR for MT alone per 1 hour delay with 95% CI</th>
<th>aOR of interaction per 1 hour delay with 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset-to-needle time:</td>
<td>Efficacy</td>
<td>mRS 0–2 (primary), day 90</td>
<td>0.86, 0.60 to 1.23</td>
<td>0.76, 0.45 to 1.30</td>
</tr>
<tr>
<td>Expected time from symptom</td>
<td></td>
<td>mRS decrease (better outcome), day 90</td>
<td>0.82, 0.60 to 1.12</td>
<td>0.90, 0.58 to 1.39</td>
</tr>
<tr>
<td>onset or last known well to</td>
<td></td>
<td>Mortality, day 90</td>
<td>1.57, 0.91 to 2.70</td>
<td>0.98, 0.42 to 2.32</td>
</tr>
<tr>
<td>IVT bolus</td>
<td></td>
<td>Any ICH on 24 hours imaging</td>
<td>1.35, 0.93 to 1.97</td>
<td>1.33, 0.78 to 2.27</td>
</tr>
<tr>
<td>Pharmacological efficacy</td>
<td></td>
<td>Symptomatic ICH on 24 hours imaging</td>
<td>1.15, 0.42 to 3.17</td>
<td>0.66, 0.17 to 2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-interventional reperfusion success</td>
<td>0.99, 0.40 to 2.42</td>
<td>1.56, 0.54 to 4.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cs-eTICI ≥2a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time-to-reperfusion</td>
<td>0.73, 0.60 to 0.89</td>
<td>1.24, 0.94 to 1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final reperfusion success (cs-eTICI ≥2b)</td>
<td>0.78, 0.44 to 1.37</td>
<td>1.04, 0.36 to 3.02</td>
</tr>
<tr>
<td>Door-to-needle time:</td>
<td>Efficacy</td>
<td>mRS 0–2 (primary), day 90</td>
<td>1.47, 0.60 to 3.56</td>
<td>0.48, 0.14 to 1.62</td>
</tr>
<tr>
<td>Expected time from arrival</td>
<td></td>
<td>mRS decrease (better outcome), day 90</td>
<td>1.88, 0.91 to 3.88</td>
<td>0.36, 0.13 to 0.99</td>
</tr>
<tr>
<td>at the emergency department</td>
<td></td>
<td>Mortality, day 90</td>
<td>0.11, 0.02 to 0.66</td>
<td>17.8, 1.8 to 174.9</td>
</tr>
<tr>
<td>to IVT bolus</td>
<td></td>
<td>Any ICH on 24 hours imaging</td>
<td>0.99, 0.40 to 2.43</td>
<td>0.95, 0.28 to 3.24</td>
</tr>
<tr>
<td></td>
<td>Pharmacological</td>
<td>Symptomatic ICH on 24 hours imaging</td>
<td>0.73, 0.05 to 10.74</td>
<td>4.60, 0.19 to 114.10</td>
</tr>
<tr>
<td></td>
<td>efficacy</td>
<td>Pre-interventional reperfusion success</td>
<td>2.26, 0.36 to 14.38</td>
<td>0.63, 0.07 to 6.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cs-eTICI ≥2a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time-to-reperfusion</td>
<td>0.40, 0.26 to 0.63</td>
<td>0.88, 0.47 to 1.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final reperfusion success (cs-eTICI ≥2b)</td>
<td>1.69, 0.37 to 7.81</td>
<td>0.56, 0.05 to 6.83</td>
</tr>
</tbody>
</table>

*The aOR indicates the interaction term of assignment to IVT+MT (as compared with MT alone) and 1 hour delay and group assignment assuming a linear effect. The OR for MT alone gives the change in the odds for functional independence per additional hour delay. The interaction refers to change in the treatment effect (odds for functional independence of IVT plus MT vs MT alone) per additional hour delay. aOR, adjusted OR; cs-eTICI, cross-sectional expanded Thrombolysis In Cerebral Infarction; ICH, intracranial hemorrhage; IVT, intravenous thrombolysis; mRS, modified Rankin Scale; MT, mechanical thrombectomy.
No interaction could be detected with the secondary safety outcomes, and pharmacological and technical efficacy. However, a sub-analysis of the DEVIT trial recently reported an association of bridging IVT with increased early reperfusion when MT was delayed more than approximately half an hour.20 Analysis of in-hospital delays revealed a potential heterogeneity of treatment effect of IVT regarding mortality and MRI shift analysis, with a larger proportional benefit seen when DTN was shorter. However, the credibility of those subgroup effects is unclear because of multiple testing and hence, this finding might be due to chance.19 Nevertheless, since the anticipated direction of the effect and the pathophysiology support such heterogeneity, we suggest a re-analysis in an individual patient meta-analysis of the trials mentioned above. In a bigger dataset, potentially relevant subgroups such as tandem lesions should be specifically addressed.22

The meta-analysis of the trials on MT21 also found a time-to-treatment interaction for in-hospital delays, but not for overall delays from symptom onset. Possible reasons include a stronger association of in-hospital delays with outcome, the time-reset effect of imaging-based inclusion,22 uncertain trustworthiness of pre- versus in-hospital time workflow information, and non-linear ischemic core growth over time.23 24

Strengths and limitations
Strengths include good overall data quality within the setting of the randomized prospective international multicenter SWIFT-DIRECT trial and a prespecified, deposited statistical analysis plan with defensive interpretation according to recommendations for subgroup analysis of randomized trials. Limitations are mainly related to the fact that the study was neither designed nor powered to detect an interaction effect—that is, assuming the observed correlations from the main study, odds ratios lower than 0.6 would be necessary to reach a power of 80%. Since imaging selection (ASPECTS) was used in the enrolled patients, the time effects observed are likely to be less pronounced than those that would occur in the overall population of patients with large-vessel occlusion in the absence of imaging selection.

CONCLUSIONS
This subgroup analysis found no evidence that the effect of bridging IVT on functional independence is modified by overall or in-hospital treatment delays. Considering the low statistical power of this subgroup analysis, a clinically important effect could have been missed. Nevertheless, exploratory analysis regarding secondary clinical outcomes indicated a potentially favorable effect of IVT associated with shorter in-hospital delays. Until further evidence regarding potential heterogeneity of the IVT effect size before MT becomes available from individual patient meta-analysis of comparable trials, IVT should be given to eligible patients and neither OTN nor DTN should influence treatment decisions regarding bridging IVT.

Author affiliations
1Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
2University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
3CTU Bern, University of Bern, Bern, Switzerland
4Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
5Department of Neuroradiology, Hospices Civils de Lyon, Lyon, France
6Department of Diagnostic and Therapeutic Neuroradiology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
7Neuro Clinical Trial Unit, Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
8Division of Neuroradiology and Division of Neurosurgery, Departments of Medical Imaging and Surgery, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
9Department of Neurology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
10Department of Diagnostic and Interventional Neuroradiology, Centre Hospitalier Universitaire de Nantes, Nantes University, Nantes, France
11Department of Neurology, Centre Hospitalier Universitaire de Nantes, Nantes University, Nantes, France
12Department of Radiology, CHU Rouen, Rouen, France
13Department of Neurology, CHU Rouen, Rouen, France
14Department of Diagnostic and Therapeutic Neuroradiology, CHRU-Nancy, Université de Lorraine, INSERM U1254, Nancy, France
15Department of Neurology, Stroke Unit, CHRU-Nancy, Université de Lorraine, INSERM U1116, Nancy, France
16Department of Neurology, Klinikum Nürnberg, Nürnberg, Germany
17Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
18Department of Neurology, CHU Caen Normandie, University Caen Normandie, INSERM U1237, Caen, France
19Department of Neuroradiology, CHU Caen Normandie, University Caen Normandie, INSERM U1237, Caen, France
20Department of Vascular Neurology, Hospices Civils de Lyon, Lyon, France
21Department of Neurology, St George’s University Hospital NHS Foundation Trust, London, UK
22Department of Interventional and Diagnostic Neuroradiology, CHU Bordeaux, University of Bordeaux, Bordeaux, France
23Stroke Unit, CHU Bordeaux, University of Bordeaux, Bordeaux, France
24Department of Neuroradiology, University Hospital RWTH Aachen, Aachen, Germany
25Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
26Department of Stroke and Diagnostic and Interventional Neuroradiology, Foehren Hospital, Suresnes, France
27Department of Neurology, Department of Neurology, University Hospital Vall d’Hebron, Barcelona, Spain
28Interventional Neuroradiology, Department of Radiology, Hospital Vall d’Hebron, Barcelona, Spain
29Department of Neuroradiology, CHU Limoges, Limoges, France
30Department of Neurology, CHU Reims, Reims, France
31Department of Neuroradiology, CHU Reims, Reims, France
32Service of Interventional and Diagnostic Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
33Department of Neurology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
34Department of Diagnostic and Interventional Neuroradiology, Tours University Hospital, Tours, France
35Stroke Unit, Department of Neurosciences, University Hospital Germans Trias i Pujol, Barcelona, Spain
36Department of Interventional Neuroradiology, Strasbourg University Hospitals, Strasbourg, France
37Department of Neurology, Lille University Hospital, Lille, France
38Department of Neurology, University Hospital Zurich, Zurich, Switzerland
39Department of Neurology, Center for Neurology and Rehabilitation, Vitznau, Switzerland
40Department of Interventional Neuroradiology, Fondation Rothschild Hospital, Paris, France
41Department of Neuroradiology, Brest University Hospital, Brest, France
42Department of Neurology, University Health Network - Toronto Western Hospital - University of Toronto, Toronto, Ontario, Canada
43Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
44Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
45Vanderbilt Cerebrovascular Program, Vanderbilt University Medical Center, Nashville, Tennessee, USA
46School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
47Department of Intracranial Endovascular Therapy, Alfred-Krupp Krankenhaus, Essen, Germany
48Department of Neuroradiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
49Department of Neuroradiology, University Hospital Basel, Basel, Switzerland
50Department of Neuroradiology and Comprehensive Stroke Center, David Geffen School of Medicine, UCLA, University of California, Los Angeles, California, USA

Twitter Thomas R Meinel @TotoMynell, Johannes Kaesmacher @CheesemakerMD, Vitor Mendes Pereira @VitorMendesPer1, Raoul Pop @RaoulPop25 and Urs Fischer @FishingNeurons
Ischemic stroke

Department of Neuroradiology, Hospital Bicêtre, APHP, Paris Sud Université, Paris, France. 82 Department of Neurology, University Medical Center Goettingen, Goettingen, Germany. 83 Department of Neurology, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada. 84 Clinical Neurocenter, University Hospital of Zürich, Zürich, Switzerland. 85 Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany. 86 JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich Gmb, RWTH Aachen University, Aachen, Germany. 87 Department of Neuroradiology, CHU Reims, Reims, France. 88 Department of Neuroradiology, Kepler University Hospital, Linz, Austria. 89 Department of Neurology, CHU Caen Normandie, INSERM U1237, University Caen Normandie, Caen, France. 90 Department of Neurology, CHU Rouen, Rouen, France. 91 Department of Neurology, GHU Paris Psychiatrie et Neurosciences & Université de Paris & INSERM U1266 & FHU NeuroVasc, Paris, France. 92 Montreal Neurological Hospital, McGill University Health Center, Montreal, Canada. 93 Department of neuroradiology, GHU Paris Psychiatrie et Neurosciences & Université de Paris & INSERM U1266 & FHU NeuroVasc, Paris, France. 94 Department of Neurology, Kepler University Hospital, Linz, Austria. 95 Department of Radiology and Nuclear Medicine, Kantonsspital St Gallen, Sankt Gallen, Switzerland. 96 Department of Neuroradiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany. 97 Department of Neurology, University Hospital Strasbourg, Strasbourg, France. 98 Department of Neurology, School of Medicine, University Hospital Rechts der Isar of the Technical University Munich, Munich, Germany.

Contributors TM, JK, LB, JG and UF contributed to conception and design of the study, analysis of data and drafting the text. TRM, JK and LB performed the statistical analysis and prepared the figures. All co-authors contributed to acquisition of data, provided significant input to interpretation of data and reviewed the paper and revised it for important intellectual content. UF and JG are the guarantors of this work.

Funding Medtronic supported the study with an unrestricted grant to the University Hospital Bern. Medtronic had no involvement in the final design, data analysis or interpretation. The University Hospital of Bern provided additional funding.

Competing interests MA reports honoraria for lectures from AstraZeneca, Bayer, Covidien, Medtronic and Sanofi; participation on Scientific Advisory Boards of Amgen, Bayer, BMS, Daiichi Sankyo, Medtronic, and Pfizer. CC reports consulting fees from Medtronic (payment made to CC). EC reports grants from the Swiss Heart Foundation and Swiss National Science Foundation, not related to present study. HCD reports that in the last 3 years, he received honoraria for participation in clinical trials, contribution to advisory boards or oral presentations from: Abbott, BMS, Boehringer Ingelheim, Daiichi Sankyo, Novo-Nordisk, Pfizer, Portola and WebMD Global. Boehringer Ingelheim provided financial support for research projects. HCD also received research grants from the German Research Council (DFG) and German Ministry of Education and Research (BMBF). HCD serves as editor of Neurologie up2date, Info Neurologie & Psychiatrie, Arzneimittelliste, as co-editor of Cephalalgia and on the editorial board of Lancet Neurology and Drugs. MTF reports research grants from AstraZeneca, Boehringer Ingelheim, Pfizer, Siemens, Siemens Healthineers, Teva and Galmed; consulting fees from Genentech, Balt USA, Cerovas, and Oclus Imaging; participation on a Data Safety Monitoring Board or Advisory Board for Balt USA, Jacobs Institute, and Imperative Care. UF reports financial support for the present study from Medtronic. SWIFT DIRECT is an investigator-initiated trial. The sponsor was not involved in the final study design, protocol, conduct, evaluation of results or preparation of the manuscript. UF also reports research grants from Medtronic BEYOND SWIFT registry, Swiss National Science Foundation, Swiss Heart Foundation; consultation fees from Medtronic, Stryker and CSL Behring (fees paid to institution); membership of a Data Safety Monitoring Board for the IN EXTREMIS trial and TITAN trial and Portola (Alexion) Advisory board (fees paid to institution); and Vice President of the Swiss Neurological Society. UF is a member of the editorial board of JNS. JS reports a Swiss National Funds (SNF) grant for MRI in stroke. JK reports financial support of Medtronic for the BEYOND SWIFT Registry (fees paid to institution); research grant from the Swiss National Science Foundation supporting the TECNO trial (fees paid to institution); Swiss Academy of Medical Sciences research grant supporting MRI research (fees paid to institution); Swiss Heart Foundation research grant supporting cardiac MRI in the etiological workup of stroke patients (fees paid to institution); AL reports grants from the University of Zürich, the LOOP Zürich, and P&K Phurkingue Foundation; consulting fees from Bayer AG; and a lecture honorarium from Molecap Pte, Singapore. DSL reports consulting fees from Cerovasen, Genentech, Medtronic, Stryker, Rapid Medical as imaging core lab. GM reports consulting fees from Stryker Neurovascular; paid lectures for Medtronic and Microvention Europe. PM reports research funding (fees paid to institution) from the Swiss National Science Foundation, Swiss Heart Foundation and Medtronic Research Grant. GM reports grants from the Swiss National Science Foundation, Swiss Heart Foundation; consulting fees from MicroVention, Stryker; payment or honoraria from Medtronic, Stryker; participation on a Data Safety Monitoring Board or Advisory Board of MicroVention. ON reports funding from a Stryker Research grant; payment or honoraria for Phenox lecture and Stryker lecture. WP reports grants from the German Research Foundation, LOEWE (research funding of the federal state of Hesse); royalties or licenses STROKE TEAM-Training (LAERDAL medical); payment or honoraria from LAERDAL medical, Alexion, Pfizer-BMS, Stryker Neurovascular; support for attending meetings and/or travel from LAERDAL medical, Alexion, Pfizer-BMS and Stryker Neurovascular. MR reports consulting fees from Medtronic, Stryker, Cereneous, Philips and Apta Targets; payment or honoraria from ischemicTV; participation on the Data Safety Monitoring Board or Advisory Board of Sensome; stock or stock options in Anaconda Biomed, CVAA and Medthix. AHS reports being a co-investigator for NIH - R01T1B030092-01, Project Title: High Speed Angiography at 1000 frames per second; Mentor for Brain Aneurysm Foundation Carol W. Harvey Chair of Research, Sharon Epperson Chair of Research, Project Title: A Whole Blood RNA Diagnostic for Unruptured Brain Aneurysm. REH Assessment Prototype Development and Testing; receipt of compensation from Amnis Therapeutics, Apellis Pharmaceuticals, Inc, Boston Scientific, Canon Medical Systems USA, Inc, Cardinal Health 200, LLC, cerebrotech Medical Systems, Inc, Cereneous, Cerevatech Medical, Inc, Cordis, Corin, Inc, Endostem Medical, Ltd, Imperative Care, InspireMD, Ltd, Integra, IRRAS AB, Medtronic, MicroVention, Minmetronex Neuro, Inc, Peijja Medical, Penumbra, Q’Apeel Medical, Inc, Rapid Medical, Serenity Medical, Inc, Silk Road Medical, StimMed, LLC, Stryker Neurovascular, Three Rivers Medical, Inc, VasSol, Viz.ai, Inc (payments made to AHS); Secretary – Board of the Society of NeuroInterventional Surgery 2020-2021 (unpaid) Chair – cerebrovascular Section of the AANS/CNS 2020-2021 (unpaid); stock or stock options Adona Medical, Inc, Amnis Therapeutics, Bend IT Technologies, Ltd, BlinkTI, Inc, Cerebrotech Medical Systems, Inc, Cerevatech Medical, Inc, Cognition Medical, CVAA Ltd, EB, Inc, Endostem Medical, Ltd, Galaxy Therapeutics, Inc, Imperative Care, Inc, InspireMD, Inc, Imperative Care, Inc, Invivo Reproductive Innovation Partners, Launch NY, Inc, NeuroRadial Technologies, Inc, NeuroTechnology Investors, Neurovascular Diagnostics, Inc, Peijja Medical, Perflow Medical, Ltd, Q’Apeel Medical, Inc, QAS,a, Inc, Radical Catheter Technologies, Inc, Rebound Therapeutics Corp (purchased 2019 by Integra Lifesciences, Corp), Rist Neurovascular, Inc (Purchased 2020 by Medtronic), Sense Diagnostics, Inc, Serenity Medical, Inc, Silk Road Medical, Sim & Cure, SongBird Therapy, Spinnaker Medical, Inc, StimmEd, LLC, Synchron, Inc, Three Rivers Medical, Inc, Truvic Medical, Inc, Tulavi Therapeutics, Inc, Vaxtrac, LLC, VICTIS, Inc, Viseon, Inc (payments made to AHS). Other financial or non-financial interests: National PI/Steering Committees: Cereneous EXCELLENT AND ARISE II Trial; Medtronic SWIFT PRIME, VANTAGE, EMBOLISE and SWIFT DIRECT Trials; Microventen FRED Trial & CONFIDENCE Study; MUSC POSITIVE Trial; Penumbra 3D SWIFT DIRECT Trial, COMPASS Trial and SWIFT III Trial; MRI Neurovascular Imaging; Rapid Medical SUCCESS Trial; InspireMD C-GUARDIANS IDE Pivotal Trial (payments made to AHS). JS reports consulting fees (paid to IS) from Sanofi Synthé-Labo, Sernier, Boheringer Ingelheim, AstraZeneca, Novonordisk and Medtronic; payment or honoraria (paid to IS) from Sanofi Synthé-Labo, Medtronic, Boheringer Ingelheim, AstraZeneca and BMS-Pfizer. JS reports funding for the present manuscript from Medtronic (paid to JS); consulting fees from Cereneous (paid to JS); participation on a Data Safety Monitoring Board or Advisory Board – MAVI (paid to IS), Phillips (paid to JS); stock or stock options in Rapid Medical (paid to JS). MW reports a grant from Stryker Neurovascular; consulting fees from Stryker Neurovascular (payments to MW); payment or honoraria from Stryker Neurovascular, Bracco Imaging (payments to MW); German Society of Neuroradiology (DGNR) Board member (no payments); receipt of equipment, materials, drugs, medical writing, gifts or other services from a Varian, Acandis, Bracco Imaging, Cereneous, Kaneka Pharmaceuticals, Medtronic, Ménitec, AB, Phenox, Stryker Neurovascular (support to institution). All other authors report no competing interests.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by Bern Ethics Committee KEK-2021. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. De-identified data, together with a data dictionary, will be made accessible after ethics clearance and upon submission of a reasonable request with a research plan to the corresponding author.

Supplemental material This content has been supplanted by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and medical diagnoses), and BMJ shall not be liable for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is

properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Thomas R Meinel http://orcid.org/0000-0002-0647-9273
Johannes Kaesmacher http://orcid.org/0000-0002-9177-2289
Christophe Cognard http://orcid.org/0000-0003-4287-2627
Vitor Mendes Pereira http://orcid.org/0000-0002-6804-3985
Jean Darcourt http://orcid.org/0000-0003-1620-4449
Chryssanthi Papagiannaki http://orcid.org/0000-0002-9473-9644
Sébastien Richard http://orcid.org/0000-0002-0945-5636
Laura Mechtouff http://orcid.org/0000-0001-9165-5763
Gautier Marnat http://orcid.org/0000-0002-7611-7753
Omid Nikoubashman http://orcid.org/0000-0002-5671-6484
Guillaume Salou http://orcid.org/0000-0003-3832-7976
Kevin Janot http://orcid.org/0000-0002-7305-3125
Raoul Pop http://orcid.org/0000-0003-4417-1496
Martin Wiesmann http://orcid.org/0000-0002-8261-5513
David Liebeskind http://orcid.org/0000-0002-5109-8736
Jeffrey L Saver http://orcid.org/0000-0001-9141-2251

REFERENCES