RT Journal Article SR Electronic T1 A novel reconstruction tool (syngo DynaCT Head Clear) in the post-processing of DynaCT images to reduce artefacts and improve image quality JF Journal of NeuroInterventional Surgery JO J NeuroIntervent Surg FD BMJ Publishing Group Ltd. SP 1268 OP 1272 DO 10.1136/neurintsurg-2015-012128 VO 8 IS 12 A1 Stephanie Lescher A1 Christina Reh A1 Maya Christina Hoelter A1 Katja Czeppan A1 Luciana Porto A1 Stella Blasel A1 Joachim Berkefeld A1 Marlies Wagner YR 2016 UL http://jnis.bmj.com/content/8/12/1268.abstract AB Background Latest generations of flat detector (FD) neuroangiography systems are able to obtain CT-like images of the brain parenchyma. Owing to the geometry of the C-arm system, cone beam artifacts are common and reduce image quality, especially at the periphery of the field of view. An advanced reconstruction algorithm (syngo DynaCT Head Clear) tackles these artifacts by using a modified interpolation-based 3D correction algorithm to improve image quality.Materials and methods Eleven volumetric datasets from FD-CT scans were reconstructed with the standard algorithm as well as with the advanced algorithm. In a two-step data analysis process, two reviewers compared dedicated regions of the skull and brain in both reconstruction modes using a 5-point scale (1, much better; 5, much worse; advanced vs standard algorithm). Both reviewers were blinded to the reconstruction mode. In a second step, two additional observers independently evaluated image quality of the 3D data (non-comparative evaluation) in dedicated regions also using a 5-point scale (1, not diagnostically evaluable; 5, good quality, perfectly usable for diagnosis) for both reconstruction algorithms.Results Both in the comparative evaluation of dedicated brain regions and in the independent analysis of the FD-CT datasets the observers rated a better image quality if the advanced algorithm was used. The improvement in image quality was statistically significant at both the supraganglionic (p=0.018) and the infratentorial (p=0.002) levels.Conclusions The advanced reconstruction algorithm reduces typical artifacts in FD-CT images and improves image quality at the periphery of the field of view.