TY - JOUR T1 - In vitro measurement of the permeability of endovascular coils deployed in cerebral aneurysms JF - Journal of NeuroInterventional Surgery JO - J NeuroIntervent Surg SP - 896 LP - 900 DO - 10.1136/neurintsurg-2017-013481 VL - 10 IS - 9 AU - Chander Sadasivan AU - Erica Swartwout AU - Ari D Kappel AU - Henry H Woo AU - David J Fiorella AU - Barry B Lieber Y1 - 2018/09/01 UR - http://jnis.bmj.com/content/10/9/896.abstract N2 - Background and purpose Aneurysm recurrence is the primary limitation of endovascular coiling treatment for cerebral aneurysms. Coiling is currently quantified by a volumetric porosity measure called packing density (pd). Blood flow through a coil mass depends on the permeability of the coil mass, and not just its pd. The permeability of coil masses has not yet been quantified. Here we measure coil permeability with a traditional falling-head permeameter modified to incorporate idealized aneurysms.Methods Silicone replicas of idealized aneurysms were manufactured with three different aneurysm diameters (4, 5, and 8 mm). Four different coil types (Codman Trufill Orbit, Covidien Axium, Microvention Microplex 10, and Penumbra 400) were deployed into the aneurysms with a target pd of 35%. Coiled replicas were installed on a falling-head permeameter setup and the time taken for a column of fluid above the aneurysm to drop a certain height was recorded. Permeability of the samples was calculated based on a simple modification of the traditional permeameter equation to incorporate a spherical aneurysm.Results The targeted 35% pd was achieved for all samples (35%±1%, P=0.91). Coil permeabilities were significantly different from each other (P<0.001) at constant pd. Microplex 10 coils had the lowest permeability of all coil types. Data suggest a trend of increasing permeability with thicker coil wire diameter (not statistically significant).Conclusions A simple in vitro setup was developed to measure the permeabilities of coil masses based on traditional permeametry. Coil permeability should be considered when evaluating the hemodynamic efficacy of coiling instead of just packing density. Coils made of thicker wires may be more permeable, and thus less effective, than coils made from thinner wires. Whether aneurysm recurrence is affected by coil wire diameter or permeability needs to be confirmed with clinical trials. ER -