Skip to main content
Log in

Training and Supervision of Thrombectomy by Remote Live Streaming Support (RESS)

Randomized Comparison Using Simulated Stroke Interventions

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Stroke patients are excluded from expeditious thrombectomy in regions lacking neurointerventional specialists. An audiovisual online streaming system was tested, allowing a neurointerventional specialist located at a neurovascular center to supervise and instruct a thrombectomy performed at a distant hospital without being physically present (remote streaming support [RESS]).

Methods

In total, 36 thrombectomy procedures were performed on a Mentice endovascular simulator by six radiologists not specialized in neurointerventions. Each radiologist was challenged with six different endovascular simulation scenarios under alternating conventional local support (specialist inside the room [LOS]) and RESS, which was performed using an advanced live streaming platform.

Results

Both support modes led to a median of 2 attempts (interquartile range [IQR] 2.0–2.0 each) until successful recanalization. There was no statistically significant difference in time from first catheter insertion to recanalization between LOS (median 24.9 min, IQR 21.0–31.5 min) and RESS (23.9 min, IQR 21.7–28.7 min, p = 0.89). The percentage of thrombi covered by the stent-retriever and average speed when retrieving the stent-retriever (3.7 mm/s, IQR 3.25–5.35 mm/s vs. 3.6 mm/sec, IQR 2.5–4.7) were similar in both groups. Fluoroscopy time did not differ (19.0 min, IQR 16.9–23.5 min vs. 19.9 min, IQR 15.9–23.5 min) with a trend towards increased median amounts of contrast medium used under RESS (62.9 ml vs. 43.1 ml; p = 0.055).

Conclusion

This study confirmed the feasibility of RESS for thrombectomy procedures in a simulated environment. This serves as basis for future studies planned to analyze the effectiveness of RESS in a real-world environment and to test if it improves the learning curve of interventionalists with limited thrombectomy experience in remote areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Wermer MJ, van Walderveen MA, Staals J, Hofmeijer J, van Oostayen JA, Lycklama à Nijeholt GJ, Boiten J, Brouwer PA, Emmer BJ, de Bruijn SF, van Dijk LC, Kappelle LJ, Lo RH, van Dijk EJ, de Vries J, de Kort PL, van Rooij WJ, van den Berg JS, van Hasselt BA, Aerden LA, Dallinga RJ, Visser MC, Bot JC, Vroomen PC, Eshghi O, Schreuder TH, Heijboer RJ, Keizer K, Tielbeek AV, den Hertog HM, Gerrits DG, van den Berg-Vos RM, Karas GB, Steyerberg EW, Flach HZ, Marquering HA, Sprengers ME, Jenniskens SF, Beenen LF, van den Berg R, Koudstaal PJ, van Zwam WH, Roos YB, van der Lugt A, van Oostenbrugge RJ, Majoie CB, Dippel DW; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20.

    Article  Google Scholar 

  2. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, de Miquel MA, Donnan GA, Roos YB, Bonafe A, Jahan R, Diener HC, van den Berg LA, Levy EI, Berkhemer OA, Pereira VM, Rempel J, Millán M, Davis SM, Roy D, Thornton J, Román LS, Ribó M, Beumer D, Stouch B, Brown S, Campbell BC, van Oostenbrugge RJ, Saver JL, Hill MD, Jovin TG; HERMES collaborators. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–31.

    Article  Google Scholar 

  3. Bhogal P, Andersson T, Maus V, Mpotsaris A, Yeo L. Mechanical thrombectomy—a brief review of a revolutionary new treatment for thromboembolic stroke. Clin Neuroradiol. 2018;28:313–26.

    Article  Google Scholar 

  4. Deguchi I, Mizuno S, Kohyama S, Tanahashi N, Takao M. Drip-and-Ship thrombolytic therapy for acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27:61–7.

    Article  Google Scholar 

  5. Brekenfeld C, Goebell E, Schmidt H, Henningsen H, Kraemer C, Tebben J, Flottmann F, Thomalla G, Fiehler J. ‘Drip-and-drive’: shipping the neurointerventionalist to provide mechanical thrombectomy in primary stroke centers. J Neurointerv Surg. 2018;10:932–6.

    Article  Google Scholar 

  6. Seker F, Möhlenbruch MA, Nagel S, Ulfert C, Schönenberger S, Pfaff J, Ringleb PA, Steiner T, Bendszus M, Herweh C. Clinical results of a new concept of neurothrombectomy coverage at a remote hospital-“drive the doctor”. Int J Stroke. 2018;13:696–9.

    Article  Google Scholar 

  7. Wei D, Oxley TJ, Nistal DA, Mascitelli JR, Wilson N, Stein L, Liang J, Turkheimer LM, Morey JR, Schwegel C, Awad AJ, Shoirah H, Kellner CP, De Leacy RA, Mayer SA, Tuhrim S, Paramasivam S, Mocco J, Fifi JT. Mobile interventional stroke teams lead to faster treatment times for thrombectomy in large vessel occlusion. Stroke. 2017;48:3295–300.

    Article  Google Scholar 

  8. Seker F, Fiehler J, Möhlenbruch MA, Heimann F, Flottmann F, Ringleb PA, Thomalla G, Steiner T, Kraemer C, Brekenfeld C, Bendszus M. Time metrics to endovascular thrombectomy in 3 triage concepts: a prospective, observational study (NEUROSQUAD). Stroke. 2019; https://doi.org/10.1161/STROKEAHA.119.027050.

    Article  PubMed  Google Scholar 

  9. Pierot L, Jayaraman MV, Szikora I, Hirsch JA, Baxter B, Miyachi S, Mahadevan J, Chong W, Mitchell PJ, Coulthard A, Rowley HA, Sanelli PC, Tampieri D, Brouwer PA, Fiehler J, Kocer N, Vilela P, Rovira A, Fischer U, Caso V, van der Worp B, Sakai N, Matsumaru Y, Yoshimura SI, Anxionnat R, Desal H, Biscoito L, Pumar JM, Diaz O, Fraser JF, Linfante I, Liebeskind DS, Nogueira RG, Hacke W, Brainin M, Yan B, Soderman M, Taylor A, Pongpech S, Tanaka M, Karel T; Asian-Australian Federation of Interventional and Therapeutic Neuroradiology (AAFITN), Australianand New Zealand Society of Neuroradiology (ANZSNR), American Society of Neuroradiology (ASNR), Canadian Society of Neuroradiology (CSNR), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Japanese Society for NeuroEndovascular Therapy (JSNET), The French Society of Neuroradiology (SFNR) Ibero-Latin American Society of Diagnostic and Therapeutic Neuroradiology (SILAN), Society of NeuroInterventional Surgery (SNIS), Society of Vascular and Interventional Neurology (SVIN), World Stroke Organization (WSO), World Federation of Interventional Neuroradiology (WFITN). Standards of practice in acute ischemic stroke intervention: international recommendations. J Neurointervent Surg. 2018;10:1121–6.

    Article  Google Scholar 

  10. Liebig T, Holtmannspötter M, Crossley R, Lindkvist J, Henn P, Lönn L, Gallagher AG. Metric-Based virtual reality simulation. A paradigm shift in training for mechanical thrombectomy in acute stroke. Stroke. 2018;49:239–42.

    Article  Google Scholar 

  11. Crossley R, Liebig T, Holtmannspoetter M, Lindkvist J, Henn P, Lonn L, Gallagher AG. Validation studies of virtual reality simulation performance metrics for mechanical thrombectomy in ischemic stroke. J Neurointervent Surg. 2019;11:775–80.

    Article  Google Scholar 

  12. Burgess L, Syms M, Holtel M, Birkmire-Peters D, Johnson R, Ramsey M. Telemedicine: teleproctored endoscopic sinus surgery. Laryngoscope. 2002;112:216–9.

    Article  Google Scholar 

  13. Ereso AQ, Garcia P, Tseng E, Gauger G, Kim H, Dua MM, Victorino GP, Guy TS. Live transference of surgical subspecialty skills using telerobotic proctoring to remote general surgeons. J Am Coll Surg. 2010;211:400–11.

    Article  Google Scholar 

  14. Datta N, MacQueen IT, Schroeder AD, Wilson JJ, Espinoza JC, Wagner JP, Filipi CJ, Chen DC. Wearable technology for global surgical teleproctoring. J Surg Educ. 2015;72:1290–5.

    Article  Google Scholar 

  15. Ricci DR, Marotta TR, Riina HA, Wan M, De Vries J. A training paradigm to enhance performance and safe use of an innovative neuroendovascular device. J Mark Access Health Policy. 2016;4:33248.

    Article  Google Scholar 

  16. Smith EE, Saver JL, Cox M, Liang L, Matsouaka R, Xian Y, Bhatt DL, Fonarow GC, Schwamm LH. Increase in endovascular therapy in get with the guidelines-stroke after the publication of pivotal trials. Circulation. 2017;136:2303–10.

    PubMed  Google Scholar 

  17. Binning MJ, Bartolini B, Baxter B, Budzik R, English J, Gupta R, Hedayat H, Krajina A, Liebeskind D, Nogueira RG, Shields R, Veznedaroglu E. Trevo 2000: results of a large real-world registry for stent retriever for acute ischemic stroke. J Am Heart Assoc. 2018;7:e10867.

    Article  Google Scholar 

  18. Aguiar de Sousa D, von Martial R, Abilleira S, Gattringer T, Kobayashi A, Gallofré M, Fazekas F, Szikora I, Feigin V, Caso V, Fischer U. Access to and delivery of acute ischaemic stroke treatments: a survey of national scientific societies and stroke experts in 44 European countries. Eur Stroke J. 2019;4:13–28.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Jawed Nawabi, Anna Kyselyova, Julia Götz, Teresa Nawka and Silvia Münchmeyer-Bechstein for assistance with the experiments.

Funding

Medtronic plc (Dublin, Ireland) kindly provided hardware free-of-charge during the preparation phase of this study. The Mentice simulator was kindly provided by the manufacturer (Mentice AB, Gothenburg, Sweden) free-of-charge for the time of the study. The funders had no influence on study design, protocol, data analysis, data interpretation and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Bechstein.

Ethics declarations

Conflict of interest

M. Bechstein received research support from the German Research Foundation (DFG). J.-H. Buhk is consultant for Acandis, Cerenovus, Medtronic, MicroVention, Stryker and Route 92. A.M. Frölich received speaker’s fees from Penumbra Inc. J. Fiehler received research support from the German Ministry of Science and Education (BMBF), German Ministry of Economy and Innovation (BMWi), German Research Foundation (DFG), European Union (EU), Hamburgische Investitions- und Förderbank (IFB), Medtronic, Microvention, Philips, Stryker. He is consultant for Acandis, Boehringer Ingelheim, Cerenovus, Covidien, Medtronic, Microvention, Penumbra and Stryker. He holds shares in Tegus Medical. G. Broocks, U. Hanning, M. Erler, M. Andjelkovic, D. Debeljak and E. Goebell declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechstein, M., Buhk, JH., Frölich, A.M. et al. Training and Supervision of Thrombectomy by Remote Live Streaming Support (RESS). Clin Neuroradiol 31, 181–187 (2021). https://doi.org/10.1007/s00062-019-00870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00870-5

Keywords

Navigation