Skip to main content
Log in

Grundlagen der Flachdetektor-CT (FD-CT)

Basics priciples of flat detector computed tomography (FD-CT)

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Flachdetektoren (FD) sind für die Anwendung in der Radiographie und Fluoroskopie entwickelt worden, um die damaligen Standards – Film-Folien-Kombinationen (FFK) und Bildverstärker (BV) – zu ersetzen. Im Vergleich zu FFK und BV bietet die FD-Technologie eine höhere Dynamik, Verzerrungsfreiheit und eine gesteigerte Dosiseffizienz. Weitere Vorteile sind die Anfertigung Serienaufnahmen, eine sofortige Digitalausgabe und eine kompakte Bauweise. Dies legt auch eine Anwendung von Flachdetektoren in der Computertomographie (CT) nahe. Inzwischen ist die FD-CT weitgehend in der interventionellen und intraoperativen Bildgebung etabliert – meist als C-Bogen-System. Die FD-Technologie hat erstmals die Weichteilbildgebung in der interventionellen Suite ermöglicht, was mit BV-Systemen nicht möglich war. Diese Übersichtsarbeit konzentriert sich auf die technischen Eigenschaften der FD-Technologie im Hinblick auf die interventionelle 3D-Bildgebung. Das Ziel der FD-CT ist nicht, die klinische CT hinsichtlich der typischen diagnostischen Untersuchungen zu ersetzen. Ihre Vorteile sind v. a. praktischer Art, wie die sofortige Verfügbarkeit der CT-Bildgebung während einer Intervention.

Abstract

Flat detectors (FDs) have been developed for use in radiography and fluoroscopy to replace standard X-ray film, film-screen combinations and image intensifiers (II). In comparison to X-ray film and II, FD technology offers higher dynamic range, dose reduction, fast digital readout and the possibility for dynamic acquisitions of image series, yet keeping to a compact design. It appeared logical to employ FD designs also for computed tomography (CT) imaging. FDCT has meanwhile become widely accepted for interventional and intra-operative imaging using C-arm systems. Additionally, the introduction of FD technology was a milestone for soft-tissue CT imaging in the interventional suite which was not possible with II systems in the past. This review focuses on technical and performance issues of FD technology and its wide range of applications for CT imaging. FDCT is not aimed at challenging standard clinical CT as regards to the typical diagnostic examinations, but it has already proven unique for a number of dedicated CT applications offering distinct practical advantages, above all the availability of immediate CT imaging during an intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Antonuk L, Jee KW, El-Mohri Y et al (2000) Strategies to improve the signal and noise performance of active matrix, flat-panel imagers for diagnostic x-ray applications. Med Phys 27:289–306

    Article  PubMed  CAS  Google Scholar 

  2. Baba R, Konno Y, Ueda K et al (2002) Comparison of flat-panel detector and image-intensifier detector for cone-beam CT. Comput Med Imaging Graph 26:153–158

    Article  PubMed  Google Scholar 

  3. Barber WC, Nygard E, Iwanczyk JS et al (2009) Characterization of a novel photon counting detector for clinical CT: count rate, energy resolution and noise performance. Proc SPIE 7258:725–824

    Google Scholar 

  4. Benndorf G, Strother CM, Claus B et al (2005) Angiographic CT in cerebrovascular stenting. Am J Neuroradiol 26:1813–1818

    PubMed  Google Scholar 

  5. Bloomquist A, Yaffe M, Mawdsley G et al (2006) Lag and ghosting in a clinical flat-panel selenium digital mammography system. Med Phys 33:2998–3005

    Article  PubMed  Google Scholar 

  6. Boone J, Nelson T, Lindfors K et al (2001) Dedicated breast CT: radiation dose and image quality evaluation. Radiology 221:657–667

    Article  PubMed  CAS  Google Scholar 

  7. Bruijns TJC, Bastiaens RJM, Hoornaert B et al (2002) Image quality of a large-area dynamic flat detector: comparison with a state-of-the-art II/TV system. Proc SPIE 4682:332–343

    Article  Google Scholar 

  8. Chang C, Sibala J, Lin F et al (1978) Preoperative diagnosis of potentially precancerous breast lesions by computed tomography breast scanner: preliminary study. Radiology 129:209–210

    PubMed  CAS  Google Scholar 

  9. Dixon RL (2003) A new look at CT dose measurement: beyond CTDI. Med Phys 30:1272–1280

    Article  PubMed  Google Scholar 

  10. Doerfler A, Wanke I, Egelhof T et al (2001) Aneurysmal rupture during embolization with Guglielmi detachable coils: causes, management and outcome. Am J Neuroradiol 22:1825–1832

    PubMed  CAS  Google Scholar 

  11. El-Sheik M, Heverhagen JT, Alfke H et al (2001) Multiplanar reconstructions and three-dimensional imaging (computed rotational osteography) of complex fractures by using a C-arm system: initial results. Radiology 221:843–849

    Article  PubMed  CAS  Google Scholar 

  12. Fahrig R, Dixon RL, Payne T et al (2006) Dose and image quality for a cone-beam C-arm CT system. Med Phys 33:4541–4550

    Article  PubMed  Google Scholar 

  13. Fahrig R, Fox S, Lownie S et al (1997) Use of a C-arm system to generate true 3D computed rotational angiograms: preliminary in vitro and in vivo results. Am J Neuroradiology 18:1507–1514

    CAS  Google Scholar 

  14. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  15. Feuerlein S, Roessl E, Proksa R et al (2008) Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging. Radiology 249:1010–1016

    Article  PubMed  Google Scholar 

  16. Heran NS, Song JK, Namba K et al (2006) The utility of DynaCT in neuroendovascular procedures. Am J Neuroradiol 27:330–332

    PubMed  CAS  Google Scholar 

  17. Jaffray DA, Siewerdsen JH (2000) Cone-beam computed tomography with a flat-panel imager: initial performance characterization. Med Phys 27:1311–1323

    Article  PubMed  CAS  Google Scholar 

  18. Jaffray DA, Siewerdsen JH, Wong J et al (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349

    Article  PubMed  Google Scholar 

  19. Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications. Publicis, Erlangen

  20. Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779

    Article  PubMed  Google Scholar 

  21. Kyriakou Y, Deak P, Langner O et al (2008) Concepts for dose determination in flat-detector CT. Phys Med Biol 53:3551–3566

    Article  PubMed  Google Scholar 

  22. Kyriakou Y, Lapp RM, Hillebrand L et al (2008) Simultaneous misalignment correction for approximate circular cone-beam computed tomography. Phys Med Biol 53:6267–6289

    Article  PubMed  CAS  Google Scholar 

  23. Kyriakou Y, Riedel T, Kalender WA (2006) Combining deterministic and Monte Carlo calculations for fast estimation of scatter intensities in CT. Phys Med Biol 51:4567–4586

    Article  PubMed  Google Scholar 

  24. Linsenmaier U, Rock C, Euler E et al (2002) Three-dimensional CT with a modified C-arm image intensifier: feasibility. Radiology 224:286–292

    Article  PubMed  Google Scholar 

  25. Ning R, Chen B, Yu R et al (2000) Flat-panel detector-based cone-beam volume CT angiography imaging: system evaluation. IEEE Trans Med Imaging 19:949–963

    Article  PubMed  CAS  Google Scholar 

  26. Rougee A, Picard C, Ponchut C et al (1993) Geometrical calibration of X-ray imaging chains for three-dimensional reconstruction. Comput Med Imaging Graph 17:295–300

    Article  PubMed  CAS  Google Scholar 

  27. Saunders R Jr, Samei E, Jesneck J et al (2005) Physical characterization of a prototype selenium-based full field digital mammography detector. Med Phys 32:588–599

    Article  PubMed  Google Scholar 

  28. Schulze D, Heiland H, Thurmann H et al (2004) Radiation exposure during midfacial imaging using 4- and 16-slice computed tomography, cone beam computed tomography systems and conventional radiography. Dentomaxillofac Radiol 33:83–86

    Article  PubMed  CAS  Google Scholar 

  29. Shope TB, Gagne RM, Johnson GC (1981) A method for describing the doses delivered by transmission x-ray computed tomography. Med Phys 8:488–495

    Article  PubMed  CAS  Google Scholar 

  30. Sourbelle K, Kachelriess M, Kalender WA (2005) Reconstruction from truncated projections in CT using adaptive detruncation. Eur Radiol 15:1008–1014

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kyriakou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriakou, Y., Struffert, T., Dörfler, A. et al. Grundlagen der Flachdetektor-CT (FD-CT). Radiologe 49, 811–819 (2009). https://doi.org/10.1007/s00117-009-1860-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-009-1860-9

Schlüsselwörter

Keywords

Navigation