Skip to main content
Log in

Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The clinical efficacy of thrombolysis in stroke patients is explained by the increased rate of recanalization, which limits infarct growth. However, the efficacy could also be explained by the protection of specific sites of the brain. Here, we investigate where is this outcome-related tissue at risk using voxel-based analysis.

Methods

We included 68 acute stroke patients with middle cerebral artery (MCA) occlusion on the admission MRI performed within 6 h of symptoms onset (H6) and 16 controls. MCA recanalization was assessed using the magnetic resonance angiography performed at day 1 (D1). Apparent diffusion coefficient (ADC) changes were analyzed using a voxel-based method between patients vs. controls group at admission (H6) in non-recanalized vs. recanalized and in 3-month poor vs. good outcome patients at D1.

Results

Complete or partial MCA recanalization was observed in 52 of 68 patients. Good outcome at 3 months occurred in 40 patients (59%). In non-recanalized patients, ADC was decreased in the deep MCA and watershed arterial territory (the lenticular nucleus, internal capsule, and the overlying periventricular white matter). This decrease was not observed in recanalized patients at D1 or patients at H6. Fiber tracking suggested that the area is crossed by the cortico-spinal, cerebellar, and intra-hemispheric association tracts. Finally, this area almost co-localized with the area associated with poor outcome.

Conclusions

A clinically relevant area of tissue at risk may occur in patients with MCA infarcts at the level of deep white matter fiber tracts. These findings suggest that neuroprotection research should be refocused on white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Humpich M, Singer OC, Du Mesnil de Rochemont R, Foerch C, Lanfermann H, Neumann-Haefelin T (2006) Effect of early and delayed recanalization on infarct pattern in proximal middle cerebral artery occlusion. Cerebrovasc Dis 22:51–56

    Article  PubMed  Google Scholar 

  2. Mazighi M, Serfaty JM, Labreuche J et al (2009) Comparison of intravenous alteplase with a combined intravenous-endovascular approach in patients with stroke and confirmed arterial occlusion (RECANALISE study): a prospective cohort study. Lancet Neurol 8:802–809

    Article  PubMed  CAS  Google Scholar 

  3. von Kummer R, Holle R, Rosin L, Forsting M, Hacke W (1995) Does arterial recanalization improve outcome in carotid territory stroke? Stroke 26:581–587

    Article  Google Scholar 

  4. Kloska SP, Wintermark M, Engelhorn T, Fiebach JB (2010) Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology 52:189–201

    Article  PubMed  Google Scholar 

  5. Heiss WD, Graf R, Wienhard K et al (1994) Dynamic penumbra demonstrated by sequential multitracer pet after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 14:892–902

    Article  PubMed  CAS  Google Scholar 

  6. Mishra NK, Albers GW, Davis SM, Donnan GA, Furlan AJ, Hacke W, Lees KR (2010) Mismatch-based delayed thrombolysis: a meta-analysis. Stroke 41:e25–e33

    Article  PubMed  Google Scholar 

  7. Moustafa RR, Baron JC (2008) Pathophysiology of ischaemic stroke: insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol 153(Suppl 1):S44–S54

    PubMed  CAS  Google Scholar 

  8. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38:967–973

    Article  PubMed  Google Scholar 

  9. Rosso C, Hevia-Montiel N, Deltour S et al (2009) Prediction of infarct growth based on apparent diffusion coefficients: penumbral assessment without intravenous contrast material. Radiology 250:184–192

    Article  PubMed  Google Scholar 

  10. Barrett KM, Ding YH, Wagner DP, Kallmes DF, Johnston KC (2009) Change in diffusion-weighted imaging infarct volume predicts neurologic outcome at 90 days: results of the acute stroke accurate prediction (ASAP) trial serial imaging substudy. Stroke 40:2422–2427

    Article  PubMed  Google Scholar 

  11. Furlan M, Marchal G, Viader F, Derlon JM, Baron JC (1996) Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 40:216–226

    Article  PubMed  CAS  Google Scholar 

  12. Olivot JM, Mlynash M, Thijs VN et al (2008) Relationships between infarct growth, clinical outcome, and early recanalization in diffusion and perfusion imaging for understanding stroke evolution (DEFUSE). Stroke 39:2257–2263

    Article  PubMed  Google Scholar 

  13. Barber PA, Darby DG, Desmond PM et al (1998) Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 51:418–426

    PubMed  CAS  Google Scholar 

  14. Beaulieu C, de Crespigny A, Tong DC, Moseley ME, Albers GW, Marks MP (1999) Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 46:568–578

    Article  PubMed  CAS  Google Scholar 

  15. Parsons MW, Yang Q, Barber PA et al (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587

    Article  PubMed  CAS  Google Scholar 

  16. Loh Y, Towfighi A, Liebeskind DS et al (2009) Basal ganglionic infarction before mechanical thrombectomy predicts poor outcome. Stroke 40:3315–3320

    Article  PubMed  Google Scholar 

  17. Seitz RJ, Sondermann V, Wittsack HJ, Siebler M (2009) Lesion patterns in successful and failed thrombolysis in middle cerebral artery stroke. Neuroradiology 51:865–871

    Article  PubMed  Google Scholar 

  18. Stoeckel MC, Wittsack HJ, Meisel S, Seitz RJ (2007) Pattern of cortex and white matter involvement in severe middle cerebral artery ischemia. J Neuroimaging 17:131–140

    Article  PubMed  Google Scholar 

  19. Jovin TG, Yonas H, Gebel JM et al (2003) The cortical ischemic core and not the consistently present penumbra is a determinant of clinical outcome in acute middle cerebral artery occlusion. Stroke 34:2426–2433

    Article  PubMed  Google Scholar 

  20. Fiebach JB, Jansen O, Schellinger PD, Heiland S, Hacke W, Sartor K (2002) Serial analysis of the apparent diffusion coefficient time course in human stroke. Neuroradiology 44:294–298

    Article  PubMed  CAS  Google Scholar 

  21. Fiehler J, Knab R, Reichenbach JR, Fitzek C, Weiller C, Rother J (2001) Apparent diffusion coefficient decreases and magnetic resonance imaging perfusion parameters are associated in ischemic tissue of acute stroke patients. J Cereb Blood Flow Metab 21:577–584

    Article  PubMed  CAS  Google Scholar 

  22. Schlaug G, Siewert B, Benfield A, Edelman RR, Warach S (1997) Time course of the apparent diffusion coefficient (ADC) abnormality in human stroke. Neurology 49:113–119

    PubMed  CAS  Google Scholar 

  23. Rosso C, Colliot O, Pires C et al (2011) Early ADC changes in motor structures predict outcome of acute stroke better than lesion volume. J Neuroradiol. doi:10.1016/j.neurad.2010.05.001, In press

  24. Neumann-Haefelin T, Du Mesnil de Rochemont R, Fiebach JB et al (2004) Stroke 35:109–114

    Article  PubMed  CAS  Google Scholar 

  25. Burgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. NeuroImage 29:1092–1105

    Article  PubMed  Google Scholar 

  26. Menon BK, Kochar P, Ah-Seng A et al (2011) Initial experience with a self-expanding retrievable stent for recanalization of large vessel occlusions in acute ischemic stroke. Neuroradiology. doi:10.1007/s00234-010-0835

  27. Eckert B, Küsel T, Leppien A, Michels P, Müller-Jensen A, Fiehler J (2011) Clinical outcome and imaging follow-up in acute stroke patients with normal perfusion CT and normal CT angiography. Neuroradiology 53:79–88

    Article  PubMed  Google Scholar 

  28. Baron JC (1999) The pathophysiology of acute cerebral ischemia: clinical approach using physiologic imaging. Rev Neurol (Paris) 155:639–643

    CAS  Google Scholar 

  29. Heiss WD, Sobesky J, Hesselmann V (2004) Identifying thresholds for penumbra and irreversible tissue damage. Stroke 35:2671–2674

    Article  PubMed  Google Scholar 

  30. DeVetten G, Coutts SB, Hill MD et al (2010) Acute corticospinal tract wallerian degeneration is associated with stroke outcome. Stroke 41:751–756

    Article  PubMed  Google Scholar 

  31. Phan TG, Chen J, Donnan G, Srikanth V, Wood A, Reutens DC (2010) Development of a new tool to correlate stroke outcome with infarct topography: a proof-of-concept study. NeuroImage 49:127–133

    Article  PubMed  Google Scholar 

  32. Seitz RJ (2010) Stroke recovery: the pyramid in focus. Neurology 74:276–277

    Article  PubMed  Google Scholar 

  33. Arakawa S, Wright PM, Koga M et al (2006) Ischemic thresholds for gray and white matter: a diffusion and perfusion magnetic resonance study. Stroke 37:1211–1216

    Article  PubMed  Google Scholar 

  34. Falcao AL, Reutens DC, Markus R et al (2004) The resistance to ischemia of white and gray matter after stroke. Ann Neurol 56:695–701

    Article  PubMed  Google Scholar 

  35. Bristow MS, Simon JE, Brown RA et al (2005) MR perfusion and diffusion in acute ischemic stroke: human grey and white matter have different thresholds for infarction. J Cereb Blood Flow Metab 25:1280–1287

    Article  PubMed  Google Scholar 

  36. Graf R, Kataoka K, Wakayama A, Rosner G, Hayakawa T, Heiss WD (1990) Functional impairment due to white matter ischemia after middle cerebral artery occlusion in cats. Stroke 21:923–928

    Article  PubMed  CAS  Google Scholar 

  37. Fiehler J, Foth M, Kucinski T et al (2002) Severe ADC decreases do not predict irreversible tissue damage in humans. Stroke 33:79–86

    Article  PubMed  Google Scholar 

  38. Khatri P, Abruzzo T, Yeatts SD, Nichols C, Broderick JP, Tomsick TA (2009) Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 73:1066–1072

    Article  PubMed  CAS  Google Scholar 

  39. Wunderlich MT, Goertler M, Postert T et al (2007) Recanalization after intravenous thrombolysis: does a recanalization time window exist? Neurology 68:1364–1368

    Article  PubMed  CAS  Google Scholar 

  40. Bang OY, Saver JL, Kim SJ et al (2011) Collateral flow predicts response to endovascular therapy for acute ischemic stroke. Stroke 42:693–699

    Article  PubMed  Google Scholar 

  41. Rother J (2008) Neuroprotection does not work! Stroke 39:523–524

    Article  PubMed  Google Scholar 

  42. Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermath of the saint trials. Ann Neurol 61:396–402

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Between 2006 and 2009, Y. Samson has received speaker fees from Jansen, Novonordisk, Sanofi-Aventis, Boehringer-Ingelheim, Pfizer, and Servier, and also owns stock in Intelligence in Medical Technologies, Paris (2009). C. Rosso, D. Dormont, and Y. Samson are co-inventors of the patent WO/2008/000973. Between 2009 and 2010, S. Lehéricy received speaker fees from EISAI, Sanofi, and Lundbeck, and from Janssen Cilag in 2009. All disclosures are unrelated to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Rosso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, C., Colliot, O., Valabrègue, R. et al. Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome. Neuroradiology 53, 763–771 (2011). https://doi.org/10.1007/s00234-011-0916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0916-5

Keywords

Navigation