Skip to main content
Log in

Dual-energy CT Immediately after Endovascular Stroke Intervention: Prognostic Implications

  • Clinical Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

Posttreatment intracerebral hemorrhage (ICH) after recanalization therapy of acute ischemic stroke increases morbidity and mortality. Dual-energy (DE) computed tomography (CT) allows differentiation of blood–brain barrier disruption (BBBD) and ICH. We evaluated the incidence of ICH and BBBD immediately after endovascular recanalization therapy, the correlation between BBBD and final infarction or ICH size, and the prognostic value of postinterventional BBBD.

Methods

Imaging data sets (pretreatment CT, posttreatment DE-CT, and follow-up imaging by CT and/or magnetic resonance imaging) of 60 consecutive patients after endovascular recanalization therapy of acute ischemic stroke were retrospectively analyzed. After material differentiation, areas of increase attenuation in posttreatment DE-CT were correlated to ICH and infarction in follow-up imaging.

Results

Areas of hyperattenuation were observed in 80.0 % (48 of 60) of all posttreatment CT. In 10.4 % (5 of 48) of these, hyperattenuating areas matched the hyperdensities on virtual nonenhanced CT and were rated as hemorrhage. The remaining 89.6 % (43 of 48) of scans with hyperattenuating areas demonstrated hyperdensities exclusively on iodine-only images and were rated as BBBD. All suspected ICH on DE-CT were proven in follow-up imaging. There were no false-positive or false-negative findings of ICH in DE-CT. In 98.3 % (59 of 60) of cases, at least small ischemic infarctions were identified in follow-up imaging. No correlation between the extent of BBBD and the final infarct size and/or early ICH size was found.

Conclusion

BBBD is a frequent finding after endovascular revascularization therapy. DE-CT allows for a reliable differentiation between frequent BBBD and rare ICH immediately after endovascular recanalization therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38:967–973

    Article  PubMed  Google Scholar 

  2. Fesl G, Patzig M, Holtmannspoetter M et al (2012) Endovascular mechanical recanalisation after intravenous thrombolysis in acute anterior circulation stroke: the impact of a new temporary stent. Cardiovasc Intervent Radiol 35:1326–1331

    Article  PubMed  Google Scholar 

  3. Koh JS, Lee SJ, Ryu CW, Kim HS (2012) Safety and efficacy of mechanical thrombectomy with solitaire stent retrieval for acute ischemic stroke: a systematic review. Neurointervention 7:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  4. Machi P, Costalat V, Lobotesis K et al (2012) Solitaire FR thrombectomy system: immediate results in 56 consecutive acute ischemic stroke patients. J Neurointerv Surg 4:62–66

    Article  PubMed Central  PubMed  Google Scholar 

  5. Smith WS, Sung G, Saver J et al (2008) Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 39:1205–1212

    Article  PubMed  Google Scholar 

  6. Costalat V, Lobotesis K, Machi P et al (2012) Prognostic factors related to clinical outcome following thrombectomy in ischemic stroke (RECOST study). 50 patients prospective study. Eur J Radiol 81:4075–4082

    Article  CAS  PubMed  Google Scholar 

  7. Molina CA (2010) Futile recanalization in mechanical embolectomy trials: a call to improve selection of patients for revascularization. Stroke 41:842–843

    Article  PubMed  Google Scholar 

  8. Alexandrov AV, Black SE, Ehrlich LE et al (1997) Predictors of hemorrhagic transformation occurring spontaneously and on anticoagulants in patients with acute ischemic stroke. Stroke 28:1198–1202

    Article  CAS  PubMed  Google Scholar 

  9. Hom J, Dankbaar JW, Soares BP et al (2011) Blood-brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. AJNR Am J Neuroradiol 32:41–48

    Article  CAS  PubMed  Google Scholar 

  10. Fiorelli M, Bastianello S, von Kummer R et al (1999) Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke 30:2280–2284

    Article  CAS  PubMed  Google Scholar 

  11. Mokin M, Kan P, Kass-Hout T et al (2012) Intracerebral hemorrhage secondary to intravenous and endovascular intraarterial revascularization therapies in acute ischemic stroke: an update on risk factors, predictors, and management. Neurosurg Focus 32:E2

    Article  PubMed  Google Scholar 

  12. t-PA Stroke Study Group TN (1997) Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28:2109–2118

    Article  Google Scholar 

  13. Greer DM, Koroshetz WJ, Cullen S et al (2004) Magnetic resonance imaging improves detection of intracerebral hemorrhage over computed tomography after intra-arterial thrombolysis. Stroke 35:491–495

    Article  PubMed  Google Scholar 

  14. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  15. Gupta R, Phan CM, Leidecker C et al (2010) Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257:205–211

    Article  PubMed  Google Scholar 

  16. Phan CM, Yoo AJ, Hirsch JA et al (2012) Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol 33:1088–1094

    Article  CAS  PubMed  Google Scholar 

  17. Molina CA, Alvarez-Sabin J, Montaner J et al (2002) Thrombolysis-related hemorrhagic infarction: a marker of early reperfusion, reduced infarct size, and improved outcome in patients with proximal middle cerebral artery occlusion. Stroke 33:1551–1556

    Article  PubMed  Google Scholar 

  18. Hacke W, Kaste M, Fieschi C et al (1998) Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 352(9136):1245–1251

    Article  CAS  PubMed  Google Scholar 

  19. Furlan A, Higashida R, Wechsler L et al (1999) Intra-arterial prourokinase for acute ischemic stroke. The PROACT II study: a randomized controlled trial. Prolyse in acute cerebral thromboembolism. JAMA 282:2003–2011

    Article  CAS  PubMed  Google Scholar 

  20. Penumbra Pivotal Stroke Trial Investigators (2009) The Penumbra pivotal stroke trial: safety and effectiveness of a new generation of mechanical devices for clot removal in intracranial large vessel occlusive disease. Stroke 40:2761–2768

    Article  Google Scholar 

  21. Bektas H, Wu TC, Kasam M et al (2010) Increased blood–brain barrier permeability on perfusion CT might predict malignant middle cerebral artery infarction. Stroke 41:2539–2544

    Article  PubMed Central  PubMed  Google Scholar 

  22. Latour LL, Kang DW, Ezzeddine MA et al (2004) Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477

    Article  PubMed  Google Scholar 

  23. Lin Y, Pan Y, Wang M et al (2012) Blood–brain barrier permeability is positively correlated with cerebral microvascular perfusion in the early fluid percussion-injured brain of the rat. Lab Invest 92:1623–1634

    Article  CAS  PubMed  Google Scholar 

  24. Mayer TE, Schulte-Altedorneburg G, Droste DW, Bruckmann H (2000) Serial CT and MRI of ischaemic cerebral infarcts: frequency and clinical impact of haemorrhagic transformation. Neuroradiology 42:233–239

    Article  CAS  PubMed  Google Scholar 

  25. Hamann GF, Okada Y, del Zoppo GJ (1996) Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 16:1373–1378

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Prof. Birgit Ertl-Wagner reports, outside the submitted work, personal fees from board membership, Philips Healthcare, Bracco, and Springer Medical Publisher; personal fees from consultancy, Munich Medical International and Philips Healthcare; personal fees from employment, University of Munich; grants from Eli Lily, Genentech, Guerbet, and Merck Serono; personal fees from payment for lectures, Siemens and Bayer Schering; personal fees from royalties, Springer Medical Publisher and Thieme Medical Publisher. The other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Morhard.

Additional information

D. Morhard and L. Ertl contributed equally to this article, and both should be considered first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morhard, D., Ertl, L., Gerdsmeier-Petz, W. et al. Dual-energy CT Immediately after Endovascular Stroke Intervention: Prognostic Implications. Cardiovasc Intervent Radiol 37, 1171–1178 (2014). https://doi.org/10.1007/s00270-013-0804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-013-0804-y

Keywords

Navigation