Skip to main content
Log in

Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology

  • Computed Tomography
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purpose

Flat-detector CT (FD-CT) is used for a variety of applications. Additionally, 3D rotational angiography (3D DSA) is used to supplement digital subtraction angiography (DSA) studies. The aim was to measure and compare the dose of (1) standard DSA and 3D DSA and (2) analogous FD-CT and multislice CT (MSCT) protocols.

Methods

Using an anthropomorphic phantom, the effective dose to patients (according to ICRP 103) was measured on an MSCT and a flat-detector angiographic system using standard protocols as recommended by the manufacturer.

Results

(1) Evaluation of DSA and 3D DSA angiography protocols: ap.-lat. Standard/low-dose series 1/0.8 mSv, enlarged oblique projection 0.3 mSv, 3D DSA 0.9 mSv (limited coverage length 0.3 mSv). (2) Comparison of FD-CT and MSCT: brain parenchyma imaging 2.9 /1.4 mSv, perfusion imaging 2.3/4.2 mSv, temporal bone 0.2 /0.2 mSv, angiography 2.9/3.3 mSv, limited to the head using collimation 0.5/0.5 mSv.

Conclusion

The effective dose for an FD-CT application depends on the application used. Using collimation for FD-CT applications, the dose may be reduced considerably. Due to the low dose of 3D DSA, we recommend using this technique to reduce the number of DSA series needed to identify working projections.

Key Points

Effective dose of FD-CT in comparison to MSCT is in comparable range.

Collimation decreases the dose of FD-CT effectively.

Effective dose of 3-D angiography is identical to 2-D DSA.

Different FD-CT programs have different dose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalender WA, Kyriakou Y (2007) Flat-detector computed tomography (FD-CT). Eur Radiol 17:2767–2779

    Article  PubMed  Google Scholar 

  2. Pfaff J, Struffert T, Gölitz P, Doerfler A (2013) Angiographic CT for intraprocedural monitoring of complex neuroendovascular procedures. AJNR Am J Neuroradiol 34:E77–E80

    Article  CAS  PubMed  Google Scholar 

  3. Tanoue S, Kiyosue H, Kenai H, Nakamura T, Yamashita M, Mori H (2000) Three-dimensional reconstructed images after rotational angiography in the evaluation of intracranial aneurysms: surgical correlation. Neurosurgery 47:866–871

    Article  CAS  PubMed  Google Scholar 

  4. von Gottberg P, Psychogios M, Schuetze G, Cohnen J, Zwaka P et al (2013) Feasibility of flat panel detector computed tomography for position assessment of external ventricular drainage. Neurol Neurochir Pol 47:32–42

    Article  Google Scholar 

  5. Struffert T, Richter G, Engelhorn T, Doelken M, Goelitz P, Kalender WA et al (2009) Visualisation of intracerebral haemorrhage with flat-detector CT compared to multislice CT: results in 44 cases. Eur Radiol 19:619–625

    Article  PubMed  Google Scholar 

  6. Heran NS, Song JK, Namba K, Smith W, Niimi Y, Berenstein A (2006) The utility of DynaCT in neuroendovascular procedures. AJNR Am J Neuroradiol 27:330–332

    CAS  PubMed  Google Scholar 

  7. Bartling SH, Gupta R, Torkos A, Dullin C, Eckhardt G, Lenarz T et al (2006) Flat-panel volume computed tomography for cochlear implant electrode array examination in isolated temporal bone specimens. Otol Neurotol 27:491–498

    Article  PubMed  Google Scholar 

  8. Bozzato A, Struffert T, Hertel V, Iro H, Hornung J (2010) Analysis of the accuracy of high-resolution computed tomography techniques for the measurement of stapes prostheses. Eur Radiol 20:566–571

    Article  PubMed  Google Scholar 

  9. Buhk JH, Lingor P, Knauth M (2008) Angiographic CT with intravenous administration of contrast medium is a noninvasive option for follow-up after intracranial stenting. Neuroradiology 50:349–354

    Article  PubMed Central  PubMed  Google Scholar 

  10. Struffert T, Kloska S, Engelhorn T, Deuerling-Zheng Y, Ott S, Doelken M et al (2011) Optimized intravenous Flat Detector CT for non-invasive visualization of intracranial stents: first results. Eur Radiol 21:411–418

    Article  PubMed  Google Scholar 

  11. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Boese J, Zellerhoff M et al (2011) Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol 21:882–889

    Article  PubMed  Google Scholar 

  12. Kyriakou Y, Richter G, Dörfler A, Kalender WA (2008) Neuroradiologic applications with routine C-arm flat panel detector CT: evaluation of patient dose measurements. AJNR Am J Neuroradiol 29:1930–1936

    Article  CAS  PubMed  Google Scholar 

  13. Geleijns J, Salvadó Artells M, de Bruin PW, Matter R, Muramatsu Y, McNitt-Gray MF (2009) Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner. Phys Med Biol 54:3141–3159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. International Commission on Radiological Protection (2007) 2007 Recommendations of the ICRP. ICRP Publication 103. Ann. ICRP 37(2–4). Elsevier Science Ltd

  15. Exact description available via http://www.thermoscientific.com

  16. Exact description of the ionization chamber, annealing oven and annealing procedure available via http://www.ptw.de

  17. Information available at http://www.dkd.eu

  18. Paul J, Krauss B, Banckwitz R, Maentele W, Bauer RW, Vogl TJ (2012) Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: study with an anthropomorphic and water phantom. Eur J Radiol 81:e699–e703

    Article  PubMed  Google Scholar 

  19. Paul J, Banckwitz R, Krauss B, Vogl TJ, Maentele W, Bauer RW (2012) Estimation and comparison of effective dose (E) in standard chest CT by organ dose measurements and dose-length-product methods and assessment of the influence of CT tube potential (energy dependency) on effective dose in a dual-source CT. Eur J Radiol 81:e507–e512

    Article  PubMed  Google Scholar 

  20. Mahnken AH, Sedlmair M, Ritter C, Banckwitz R, Flohr T (2012) Efficacy of lower-body shielding in computed tomography fluoroscopy-guided interventions. Cardiovasc Intervent Radiol 35:1475–1479

    Article  PubMed  Google Scholar 

  21. Kim S, Sopko D, Toncheva G, Enterline D, Keijzers B, Yoshizumi TT (2012) Radiation dose from 3D rotational X-ray imaging: organ and effective dose with conversion factors. Radiat Prot Dosim 150:50–54

    Article  CAS  Google Scholar 

  22. Bai M, Liu X, Liu B (2013) Effective patient dose during neuroradiological C-arm CT procedures. Diagn Interv Radiol 19:29–32

    PubMed  Google Scholar 

  23. Tsapaki V, Vano E, Muavrikou I, Nueofotistou V, Gallego JJ, Fernandez JM et al (2008) Comparison of patient dose in two-dimensional carotid arteriography and three-dimensional rotational angiography. Cardiovasc Intervent Radiol 31:477–482

    Article  PubMed  Google Scholar 

  24. Schueler BA, Kallmes DF, Cloft HJ (2005) 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol 26:1898–1901

    PubMed  Google Scholar 

  25. Bai M, Liu B, Mu H, Liu X, Jiang Y (2012) The comparison of radiation dose between C-arm flat-detector CT (DynaCT) and multi-slice CT (MSCT): a phantom study. Eur J Radiol 81:3577–3580

    Article  PubMed  Google Scholar 

  26. Struffert T, Deuerling-Zheng Y, Kloska S, Engelhorn T, Strother CM, Kalender WA et al (2010) Flat detector CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. AJNR Am J Neuroradiol 31:1462–1469

    Article  CAS  PubMed  Google Scholar 

  27. Diekmann S, Siebert E, Juran R, Roll M, Deeg W, Bauknecht HC et al (2010) Dose exposure of patients undergoing comprehensive stroke imaging by multidetector-row CT: comparison of 320-detector row and 64-detector row CT scanners. AJNR Am J Neuroradiol 31:1003–1009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The scientific guarantor of this publication is Prof. Arnd Doerfler. The authors of this manuscript declare relationships with the following companies: Rosemarie Banckwitz, Christoph Koehler and Kevin Royalty are full-time Siemens employees. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. The authors state that this work has not received any funding. No complex statistical methods were necessary for this paper. Institutional review board approval was not required because we performed a phantom study. Human subjects were not involved. Animals were not involved. No study subjects or cohorts have been previously reported. Methodology: experimental.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Struffert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struffert, T., Hauer, M., Banckwitz, R. et al. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol 24, 1257–1265 (2014). https://doi.org/10.1007/s00330-014-3136-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-014-3136-7

Keywords

Navigation