Skip to main content
Log in

Local paclitaxel induces late lumen enlargement in coronary arteries after balloon angioplasty

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

This study investigated p aclitaxel-induced luminal changes following drug-coated balloon (DCB) angioplasty to treat coronary de novo lesions without additional stenting. DCB-mediated local drug delivery reduces late lumen loss in de novo coronary artery lesions. We performed a retrospective clinical assessment based on a pre-specified quantitative coronary angiography (QCA) protocol.

Methods

QCA was performed for each centre to assess the primary endpoint late lumen changes, i.e. the difference between in-lesion minimal lumen diameter (MLD) at the routine angiographic follow-up as compared to post-procedural in-lesion MLDs. These MLD changes were compared to corresponding reference vessel diameter changes as an intra-patient control.

Results

We evaluated 58 consecutive native coronary artery lesions directly after DCB angioplasty and at a routine target follow-up angiography of 4 months by QCA. Target lesion MLD increased significantly within the 4.1 ± 2.1 month observation period (1.75 ± 0.55 vs. 1.91 ± 0.55 mm, p < 0.001, diameter stenosis 33.8 ± 12.3 vs. 26.9 ± 13.8 %, p < 0.001), while there were no changes in non-target reference vessel diameters (2.33 ± 0.60 vs. 2.34 ± 0.61 mm, p = ns). A total of 69 % of patients showed luminal enlargement whereas 29 % had minor luminal loss.

Conclusion

Local application of paclitaxel by DCB angioplasty to native coronary arteries after pre-dilatation without major dissection and recoil leads to late lumen increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith SC Jr, Feldman TE, Hirshfeld JW Jr et al (2006) American College of Cardiology/American Heart Association Task Force on Practice Guidelines; ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention. ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol 47:e1–e121

    Article  PubMed  Google Scholar 

  2. Wijns W, Kolh P, Danchin N et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555

    Article  PubMed  Google Scholar 

  3. Brophy JM, Belisle P, Joseph L (2003) Evidence for use of coronary stents. A hierarchical bayesian meta-analysis. Ann Intern Med 138:777–786

    Article  PubMed  Google Scholar 

  4. Al Suwaidi J, Holmes DR Jr, Salam AM et al (2004) Impact of coronary artery stents on mortality and nonfatal myocardial infarction: meta-analysis of randomized trials comparing a strategy of routine stenting with that of balloon angioplasty. Am Heart J 147:815–822

    Article  PubMed  Google Scholar 

  5. Holmes DR Jr, Vlietstra RE, Smith HC et al (1984) Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol 53:77C–81C

    Article  PubMed  Google Scholar 

  6. Cremers B, Toner JL, Schwartz LB et al (2012) Inhibition of neointimal hyperplasia with a novel zotarolimus coated balloon catheter. Clin Res Cardiol 101(6):469–476

    Article  CAS  PubMed  Google Scholar 

  7. Cremers B, Kelsch B, Clever YP et al (2012) Inhibition of neointimal proliferation after bare metal stent implantation with low-pressure drug delivery using a paclitaxel-coated balloon in porcine coronary arteries. Clin Res Cardiol 101(5):385–391

    Article  CAS  PubMed  Google Scholar 

  8. Scheller B, Hehrlein C, Bocksch W et al (2006) Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med 355:2113–2124

    Article  CAS  PubMed  Google Scholar 

  9. Unverdorben M, Vallbracht C, Cremers B et al (2009) Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation 119:2986–2994

    Article  CAS  PubMed  Google Scholar 

  10. Navarese EP, Austin D, Gurbel PA et al (2013) Drug-coated balloons in treatment of in-stent restenosis: a meta-analysis of randomised controlled trials. Clin Res Cardiol 102(4):279–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bonaventura K, Leber AW, Sohns C et al (2012) Cost-effectiveness of paclitaxel-coated balloon angioplasty and paclitaxel-eluting stent implantation for treatment of coronary in-stent restenosis in patients with stable coronary artery disease. Clin Res Cardiol 101(7):573–584

    Article  PubMed  Google Scholar 

  12. Wöhrle J, Zadura M, Möbius-Winkler S et al (2012) SeQuentPlease World Wide Registry: clinical results of SeQuent please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J Am Coll Cardiol 60:1733–1738

    Article  PubMed  Google Scholar 

  13. Scheller B, Fischer D, Clever YP et al (2013) Treatment of a coronary bifurcation lesion with drug-coated balloons: lumen enlargement and plaque modification after 6 months. Clin Res Cardiol 102(6):469–472

    Article  PubMed  Google Scholar 

  14. Kleber FX, Mathey DG, Rittger H et al (2011) How to use the drug-eluting balloon: recommendations by the German consensus group. EuroIntervention 7(Suppl K):K125–K128

    Article  PubMed  Google Scholar 

  15. Kleber FX, Rittger H, Bonaventura K et al (2013) Drug-coated balloons for treatment of coronary artery disease: updated recommendations from a consensus group. Clin Res Cardiol 102(11):785–797

    Article  CAS  PubMed  Google Scholar 

  16. Huber MS, Mooney JF, Madison J et al (1991) Use of a morphologic classification to predict clinical outcome after dissection from coronary angioplasty. Am J Cardiol 68:467–471

    Article  CAS  PubMed  Google Scholar 

  17. Hausleiter J, Jost S, Nolte CW et al (1997) Comparative in vitro validation of eight first- and second-generation quantitative coronary angiography systems. Coron Artery Dis 8:83–90

    Article  CAS  PubMed  Google Scholar 

  18. Dietz U, Rupprecht HJ, Brennecke R et al (1997) Comparison of QCA systems. Int J Card Imaging 13:271–280

    Article  CAS  PubMed  Google Scholar 

  19. Herrington D, Walford G (1993) Optimal frame selection for QCA. In: Reiber JHC, Serruys PW (eds) Advances in quantitative coronary arteriography. Kluwer Academic Publishers, Dordrecht, pp 125–135

    Chapter  Google Scholar 

  20. Reiber JH, van Eldik-Helleman P, Visser-Akkerman N et al (1988) Variabilities in measurement of coronary arterial dimensions resulting from variations in cineframe selection. Cathet Cardiovasc Diagn 14:221–228

    Article  CAS  PubMed  Google Scholar 

  21. Haude M, Erbel R, Issa H et al (1993) Quantitative analysis of elastic recoil after balloon angioplasty and after intracoronary implantation of balloon-expandable Palmaz-Schatz stents. J Am Coll Cardiol 21:26–34

    Article  CAS  PubMed  Google Scholar 

  22. Sigwart U, Puel J, Mirkovitch V et al (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 316:701–706

    Article  CAS  PubMed  Google Scholar 

  23. Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group. N Engl J Med 331:489–495

    Article  CAS  PubMed  Google Scholar 

  24. Brener SJ, Prasad AJ, Khan Z et al (2011) The relationship between late lumen loss and restenosis among various drug-eluting stents: a systematic review and meta-regression analysis of randomized clinical trials. Atherosclerosis 214:158–162

    Article  CAS  PubMed  Google Scholar 

  25. Chevalier B, Silber S, Park SJ, NOBORI 1 Clinical Investigators et al (2009) Randomized comparison of the Nobori Biolimus A9-eluting coronary stent with the Taxus Liberte paclitaxel-eluting coronary stent in patients with stenosis in native coronary arteries: the NOBORI 1 trial–Phase 2. Circ Cardiovasc Interv 2:188–195

    Article  CAS  PubMed  Google Scholar 

  26. Bondesson P, Lagerqvist B, James SK et al (2012) Comparison of two drug-eluting balloons: a report from the SCAAR registry. EuroIntervention 8:444–449

    Article  PubMed  Google Scholar 

  27. Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  CAS  PubMed  Google Scholar 

  28. Kakuta T, Currier JW, Haudenschild CC et al (1994) Differences in compensatory vessel enlargement, not intimal formation, account for restenosis after angioplasty in the hypercholesterolemic rabbit model. Circulation 89:2809–2815

    Article  CAS  PubMed  Google Scholar 

  29. Heldman AW, Cheng L, Jenkins GM et al (2001) Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation 103:2289–2295

    Article  CAS  PubMed  Google Scholar 

  30. Habara S, Mitsudo K, Kadota K et al (2011) Effectiveness of paclitaxel-eluting balloon catheter in patients with sirolimus-eluting stent restenosis. JACC Cardiovasc Interv 4:149–154

    Article  PubMed  Google Scholar 

  31. Byrne RA, Neumann FJ, Mehilli J, ISAR-DESIRE 3 investigators et al (2013) Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drug-eluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet 381:461–467

    Article  CAS  PubMed  Google Scholar 

  32. Latib A, Colombo A, Castriota F et al (2012) A randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels: the BELLO (Balloon Elution and Late Loss Optimization) study. J Am Coll Cardiol 60:2473–2480

    Article  CAS  PubMed  Google Scholar 

  33. Rittger H, Brachmann J, Sinha AM et al (2012) A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: the PEPCAD-DES study. J Am Coll Cardiol 59:1377–1382

    Article  CAS  PubMed  Google Scholar 

  34. Clever YP, Cremers B, von Scheidt W et al (2014) Compassionate use of a paclitaxel coated balloon in patients with refractory recurrent coronary in-stent restenosis. Clin Res Cardiol 103(1):21–27

    Article  CAS  PubMed  Google Scholar 

  35. Werk M, Albrecht T, Meyer DR et al (2012) Paclitaxel-coated balloons reduce Restenosis after femoro-popliteal angioplasty: evidence from the randomized PACIFIER trial. Circ Cardiovasc Interv 5:831–840

    Article  CAS  PubMed  Google Scholar 

  36. Tepe G, Zeller T, Albrecht T et al (2008) Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 358:689–699

    Article  CAS  PubMed  Google Scholar 

  37. Werk M, Langner S, Reinkensmeier B et al (2008) Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 118:1358–1365

    Article  CAS  PubMed  Google Scholar 

  38. Pires NM, Eefting D, de Vries MR et al (2007) Sirolimus and paclitaxel provoke different vascular pathological responses after local delivery in a murine model for restenosis on underlying atherosclerotic arteries. Heart 93:922–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Vogt F, Stein A, Rettemeier G et al (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. Eur Heart J 25:1330–1340

    Article  CAS  PubMed  Google Scholar 

  40. Speck U, Cremers B, Kelsch B et al (2012) Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ Cardiovasc Interv 5:392–400

    Article  CAS  PubMed  Google Scholar 

  41. Axel DI, Kunert W, Göggelmann C et al (1997) Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 96:636–645

    Article  CAS  PubMed  Google Scholar 

  42. Ako J, Morino Y, Honda Y et al (2005) Late incomplete stent apposition after sirolimus-eluting stent implantation: a serial intravascular ultrasound analysis. J Am Coll Cardiol 46:1002–1005

    Article  CAS  PubMed  Google Scholar 

  43. Hou D, Rogers PI, Toleikis PM et al (2000) Intrapericardial paclitaxel delivery inhibits neointimal proliferation and promotes arterial enlargement after porcine coronary overstretch. Circulation 102:1575–1581

    Article  CAS  PubMed  Google Scholar 

  44. Diletti R, Serruys PW, Farooq V et al (2012) ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design. Am Heart J 164:654–663

    Article  CAS  PubMed  Google Scholar 

  45. Hirshfeld JW Jr, Schwartz JS, Jugo R et al (1991) Clinical and angiographic determinants of primary coronary angioplasty success. M-HEART Investigators. J Am Coll Cardiol 17:22–28

    Article  PubMed  Google Scholar 

  46. Lam JY, Chesebro JH, Steele PM et al (1986) Deep arterial injury during experimental angioplasty: relation to a positive indium-111-labeled platelet scintigram, quantitative platelet deposition and mural thrombosis. J Am Coll Cardiol 8:1380–1386

    Article  CAS  PubMed  Google Scholar 

  47. Chesebro JH, Lam JY, Badimon L et al (1987) Restenosis after arterial angioplasty: a hemorrheologic response to injury. Am J Cardiol 60:10B–16B

    Article  CAS  PubMed  Google Scholar 

  48. Serruys PW, Luijten HE, Beatt KJ et al (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77:361–371

    Article  CAS  PubMed  Google Scholar 

  49. Zeymer U, Waliszewski M, Spiecker M et al (2014) Prospective ‘real world’ registry for the use of the ‘PCB only’ strategy in small vessel de novo lesions. Heart 100(4):311–316

    Article  CAS  PubMed  Google Scholar 

  50. Currier JW, Faxon DP (1995) Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? J Am Coll Cardiol 25:516–520

    Article  CAS  PubMed  Google Scholar 

  51. Leimgruber PP, Roubin GS, Anderson HV et al (1985) Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation 72:530–535

    Article  CAS  PubMed  Google Scholar 

  52. Poerner TC, Otto S, Gassdorf J et al (2011) A prospective randomised study using optical coherence tomography to assess endothelial coverage and neointimal proliferation at 6-months after implantation of a coronary everolimus-eluting stent compared with a bare metal stent postdilated with a paclitaxel-eluting balloon (OCTOPUS Trial): rationale, design and methods. EuroIntervention 7(Suppl K):K93–K99

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare the following conflicts of interest: Franz Kleber is a consultant to B. Braun and has received institutional grant support by Medtronic and B. Braun. Yvonne Clever and Telse Hausschild declared no potential conflict of interest. Antonia Schulz received travel expenses from B. Braun. Matthias Waliszweski is a full-time employee at the Medical Scientific Affairs department of B. Braun Vascular Systems. Michael Böhm and Ulrich Dietz declared no conflict of interest. Bruno Scheller is a consultant to B. Braun and received institutional grants and lecture fees from B. Braun as well as travel expenses from Medtronic and B. Braun. Bodo Cremers received lecture fees from Medtronic and B. Braun as well as travel expenses from Medtronic and B. Braun. This is an investigator-driven study. Relative to this clinical assessment there was no funding provided from any public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Scheller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleber, F.X., Schulz, A., Waliszewski, M. et al. Local paclitaxel induces late lumen enlargement in coronary arteries after balloon angioplasty. Clin Res Cardiol 104, 217–225 (2015). https://doi.org/10.1007/s00392-014-0775-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0775-2

Keywords

Navigation