Skip to main content
Log in

Radial artery applanation tonometry for continuous noninvasive arterial blood pressure monitoring in the cardiac intensive care unit

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Hemodynamic monitoring plays a pivotal role in the treatment of patients in the cardiac intensive care unit (CICU). The innovative radial artery applanation tonometry technology allows for continuous noninvasive arterial blood pressure (AP) measurement. By closing the gap between continuous invasive AP monitoring (arterial catheter) and intermittent noninvasive AP monitoring (oscillometry) this technology might improve CICU patient monitoring. We therefore aimed to evaluate the measurement performance of radial artery applanation tonometry in comparison with a radial arterial catheter in CICU patients.

Methods

In this prospective method comparison study, we simultaneously recorded AP noninvasively with radial artery applanation tonometry (T-line 200pro device; Tensys Medical Inc., San Diego, CA, USA) and invasively with an arterial catheter (criterion standard) in 30 patients treated in the CICU of a German university hospital. We statistically analyzed 7,304 averaged 10-beat epochs of measurements of mean AP, systolic AP, and diastolic AP by using Bland–Altman analysis for repeated measurements.

Results

Our study revealed a mean difference ± standard deviation (95 % limits of agreement; percentage error) between radial artery applanation tonometry and the criterion standard method (radial arterial catheter) of +2 ± 6 mmHg (−10 to +14 mmHg; 17 %) for mean AP, −6 ± 11 mmHg (−28 to +15 mmHg; 20 %) for systolic AP, and +4 ± 7 mmHg (−9 to +17 mmHg; 23 %) for diastolic AP.

Conclusions

In CICU patients, continuous noninvasive measurement of AP using radial artery applanation tonometry is feasible. The technology showed reasonable accuracy and precision in comparison with radial arterial catheter-derived AP values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C, Cannesson M (2014) Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology 120:1080–1097

    Article  PubMed  Google Scholar 

  2. Saugel B, Dueck R, Wagner JY (2014) Measurement of blood pressure. Best Pract Res Clin Anaesthesiol 28:309–322

    Article  PubMed  Google Scholar 

  3. Janelle GM, Gravenstein N (2006) An accuracy evaluation of the T-line Tensymeter (continuous noninvasive blood pressure management device) versus conventional invasive radial artery monitoring in surgical patients. Anesth Analg 102:484–490

    Article  PubMed  Google Scholar 

  4. Szmuk P, Pivalizza E, Warters RD, Ezri T, Gebhard R (2008) An evaluation of the T-Line Tensymeter continuous noninvasive blood pressure device during induced hypotension. Anaesthesia 63:307–312

    Article  CAS  PubMed  Google Scholar 

  5. Dueck R, Goedje O, Clopton P (2012) Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J Clin Monit Comput 26:75–83

    Article  PubMed  Google Scholar 

  6. Saugel B, Fassio F, Hapfelmeier A, Meidert AS, Schmid RM, Huber W (2012) The T-Line TL-200 system for continuous non-invasive blood pressure measurement in medical intensive care unit patients. Intensive Care Med 38:1471–1477

    Article  PubMed  Google Scholar 

  7. Saugel B, Meidert AS, Hapfelmeier A, Eyer F, Schmid RM, Huber W (2013) Non-invasive continuous arterial pressure measurement based on radial artery tonometry in the intensive care unit: a method comparison study using the T-Line TL-200pro device. Br J Anaesth 111:185–190

    Article  CAS  PubMed  Google Scholar 

  8. Meidert AS, Huber W, Hapfelmeier A, Schofthaler M, Muller JN, Langwieser N, Wagner JY, Schmid RM, Saugel B (2013) Evaluation of the radial artery applanation tonometry technology for continuous noninvasive blood pressure monitoring compared with central aortic blood pressure measurements in patients with multiple organ dysfunction syndrome. J Crit Care 28:908–912

    Article  PubMed  Google Scholar 

  9. Meidert AS, Huber W, Muller JN, Schofthaler M, Hapfelmeier A, Langwieser N, Wagner JY, Eyer F, Schmid RM, Saugel B (2014) Radial artery applanation tonometry for continuous non-invasive arterial pressure monitoring in intensive care unit patients: comparison with invasively assessed radial arterial pressure. Br J Anaesth 112:521–528

    Article  CAS  PubMed  Google Scholar 

  10. Dueck R, Goedje O, Clopton P (2012) Noninvasive continuous beat-to-beat radial artery pressure via TL-200 applanation tonometry. J Clin Monit Comput 26:75–83

    Article  PubMed  Google Scholar 

  11. Cheng HM, Lang D, Tufanaru C, Pearson A (2012) Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol 167(5):1867–1876

    Article  PubMed  Google Scholar 

  12. Fischer-Rasokat U, Honold J, Lochmann D, Liebetrau C, Leick J, Hamm C, Fichtlscherer S, Mollmann H, Spyridopoulos I (2014) Ivabradine therapy to unmask heart rate-independent effects of beta-blockers on pulse wave reflections. Clinical Res Cardiol 103:487–494

    Article  CAS  Google Scholar 

  13. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  14. Bland JM, Altman DG (2007) Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat 17:571–582

    Article  PubMed  Google Scholar 

  15. Critchley LA, Critchley JA (1999) A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput 15:85–91

    Article  CAS  PubMed  Google Scholar 

  16. Hochman JS, Sleeper LA, Webb JG, Dzavik V, Buller CE, Aylward P, Col J, White HD, Investigators S (2006) Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 295:2511–2515

    Article  PubMed Central  PubMed  Google Scholar 

  17. Eleid MF, Rihal CS, Gulati R, Bell MR (2013) Systematic use of transradial PCI in patients with ST-segment elevation myocardial infarction: a call to “arms”. JACC Cardiovasc Interv 6:1145–1148

    Article  PubMed  Google Scholar 

  18. Iga A, Wagatsuma K, Yamazaki J, Ikeda T (2014) Transradial versus transfemoral coronary intervention for acute myocardial infarction complicated by cardiogenic shock: is transradial coronary intervention suitable for emergency PCI in high-risk acute myocardial infarction? J Invasive Cardiol 26:196–202

    PubMed  Google Scholar 

  19. O’Horo JC, Maki DG, Krupp AE, Safdar N (2014) Arterial catheters as a source of bloodstream infection: a systematic review and meta-analysis. Crit Care Med 42:1334–1339

    Article  PubMed  Google Scholar 

  20. Saugel B, Meidert AS, Langwieser N, Wagner JY, Fassio F, Hapfelmeier A, Prechtl LM, Huber W, Schmid RM, Godje O (2014) An autocalibrating algorithm for non-invasive cardiac output determination based on the analysis of an arterial pressure waveform recorded with radial artery applanation tonometry: a proof of concept pilot analysis. J Clin Monit Comput 28:357–362

    Article  PubMed  Google Scholar 

  21. Saugel B, Reuter DA (2014) Are we ready for the age of non-invasive haemodynamic monitoring? Br J Anaesth 113:340–343

    Article  CAS  PubMed  Google Scholar 

  22. Wagner JY, Saugel B (2014) When should we adopt continuous noninvasive hemodynamic monitoring technologies into clinical routine? J Clin Monit Comput. doi:10.1007/s10877-014-9619-x

    Google Scholar 

  23. Selle A, Figulla HR, Ferrari M, Rademacher W, Goebel B, Hamadanchi A, Franz M, Schlueter A, Lehmann T, Lauten A (2014) Impact of rapid ventricular pacing during TAVI on microvascular tissue perfusion. Clinical Res Cardiol 103:902–911

    Article  Google Scholar 

  24. Vavuranakis M, Vrachatis DA, Boudoulas H, Papaioannou TG, Moldovan C, Kariori MG, Kalogeras KI, Pietri PG, Tentolouris C, Stefanadis C (2012) Effect of transcatheter aortic valve implantation on the ascending aorta’s elasticity. Clinical Res Cardiol 101:895–899

    Article  Google Scholar 

  25. Backhoff D, Muller M, Ruschewski W, Paul T, Krause U (2014) ICD therapy for primary prevention of sudden cardiac death after Mustard repair for d-transposition of the great arteries. Clinical Res Cardiol 103:894–901

    Article  Google Scholar 

Download references

Acknowledgments

Tensys Medical Inc. (San Diego, CA, USA) provided the technical equipment for recording and extraction of arterial blood pressure measurements using radial arterial applanation tonometry.

Conflict of interest

BS, ASM, and JYW received unrestricted research grants from Tensys Medical Inc. (San Diego, CA, USA). For all other authors there is no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Saugel.

Additional information

N. Langwieser and L. Prechtl contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langwieser, N., Prechtl, L., Meidert, A.S. et al. Radial artery applanation tonometry for continuous noninvasive arterial blood pressure monitoring in the cardiac intensive care unit. Clin Res Cardiol 104, 518–524 (2015). https://doi.org/10.1007/s00392-015-0816-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0816-5

Keywords

Navigation