Skip to main content
Log in

Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Old age is associated with a deficient recovery from stroke, but the cellular mechanisms underlying such phenomena are poorly understood. To address this issue, focal cerebral ischemia was produced by reversible occlusion of the right middle cerebral artery in 3- and 20-month-old male Sprague–Dawley rats. Aged rats showed a delayed and suboptimal functional recovery in the post-stroke period. Using BrdU-labeling, quantitative immunohistochemistry and 3-D reconstruction of confocal images, we found that aged rats are predisposed to rapidly develop an infarct within the first few days after ischemia. The emergence of the necrotic zone is associated with a high rate of cellular degeneration, premature accumulation of proliferating BrdU-positive cells that appear to emanate from capillaries in the infarcted area, and a large number of apoptotic cells. With double labeling techniques, we were able to identify, for the first time, over 60% of BrdU-positive cells either as reactive microglia (45%), oligodendrocyte progenitors (17%), astrocytes (23%), CD8+ lymphocytes (4%), or apoptotic cells (<1%). Paradoxically, despite a robust reactive phenotype of microglia and astrocytes in aged rats, at 1-week post-stroke, the number of proliferating microglia and astrocytes was lower in aged rats than in young rats. Our data indicate that aging is associated with rapid infarct development and a poor prognosis for full recovery from stroke that is correlated with premature cellular proliferation and increased cellular degeneration and apoptosis in the infarcted area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdel-Rahman A, Rao MS, Shetty AK (2004) Nestin expression in hippocampal astrocytes after injury depends on the age of the hippocampus. Glia 47:299–313

    Article  PubMed  Google Scholar 

  2. Asher RA, Morgenstern DA, Fidler PS, Adcock KH, Oohira A, Braistead JE, Levine JM, Margolis RU, Rogers JH, Fawcett JW (2002) Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J Neurosci 20:2427–2438

    Google Scholar 

  3. Adams MM, Shah RA, Janssen WG, Morrison JH (2001) Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proc Natl Acad Sci USA 98:8071–8076

    Article  PubMed  CAS  Google Scholar 

  4. Adams MM, Gazzaley AH, Morrison JH (2001) Attenuated lesion-induced N-methyl-d-aspartate receptor (NMDAR) plasticity in the dentate gyrus of aged rats following perforant path lesions. Exp Neurol 172:244–249

    Article  PubMed  CAS  Google Scholar 

  5. Aliev G, Smith MA, Seyidov D, Neal ML, Lamb BT, Nunomura A, Gasimov EK, Vinters HV, Perry G, LaManna JC, Friedland RP (2002) The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer’s disease. Brain Pathol 12:21–35

    Article  PubMed  CAS  Google Scholar 

  6. Badan I, Buchhold B, Hamm A, Gratz M, Walker LC, Platt D, Kessler Ch, Popa-Wagner A (2003) Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J Cereb Blood Flow Metab 23:845–854

    Article  PubMed  CAS  Google Scholar 

  7. Badan I, Dinca I, Buchhold B, Suofu Y, Walker L, Gratz M, Platt D, Kessler Ch, Popa-Wagner A (2004) Accelerated accumulation of N- and C-terminal betaAPP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats. Eur J Neurosci 19:2270–2280

    Article  PubMed  CAS  Google Scholar 

  8. Barnett HJ (2002) Stroke prevention in the elderly. Clin Exp Hypertens 24:563–571

    Article  PubMed  CAS  Google Scholar 

  9. Bury SD, Jones TA (2002) Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the “unaffected” forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 22:8597–8606

    PubMed  CAS  Google Scholar 

  10. Bondolfi L, Calhoun M, Ermini F, Kuhn HG, Widerhold K-H, Walker L, Staufenbiel M, Jucker (2002) Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. J Neurosci 22:515–522

    PubMed  CAS  Google Scholar 

  11. Brown AW, Marlowe KJ, Bjelke B (2003) Age effect on motor recovery in a post-acute animal stroke model. Neurobiol Aging 24:607–614

    Article  PubMed  Google Scholar 

  12. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  PubMed  CAS  Google Scholar 

  13. Chen ZJ, Ughrin Y, Levine JM (2002) Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci 20:125–139

    Article  PubMed  CAS  Google Scholar 

  14. Davies M, Mendelow AD, Perry RH, Chambers IR, James OFW (1995) Experimental stroke and neuroprotection in the aging rat brain. Stroke 26:1072–1078

    Google Scholar 

  15. Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocyte progenitors and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    Article  PubMed  Google Scholar 

  16. Floyd RA, Hensley K (2000) Nitrone inhibition of age-associated oxidative damage. Ann N Y Acad Sci 899:222–237

    Article  PubMed  CAS  Google Scholar 

  17. Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    Article  PubMed  CAS  Google Scholar 

  18. Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89:3205–3214

    Article  PubMed  CAS  Google Scholar 

  19. Garcia JH, Wagner S, Liu K-F, Hu X (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Stroke 26:627–635

    PubMed  CAS  Google Scholar 

  20. Gozal D, Row BW, Kheirandish L, Li R, Guo RL, Qiang F, Brittian KR (2003) Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function. J Neurochem 86:1545–1552

    Article  PubMed  CAS  Google Scholar 

  21. Hajdu MA, Heistad DD, Siems JE, Baumbach GL (1990) Effects of aging on mechanics and composition of cerebral arterioles in rats. Circ Res 66:1747–1754

    PubMed  CAS  Google Scholar 

  22. Hess DC, Hill WD, Carroll JE, Borlongan CV (2004) Do bone marrow cells generate neurons?. Arch Neurol 61:483–485

    Article  PubMed  Google Scholar 

  23. Hiona A, Leeuwenburgh C (2004) Effects of age and caloric restriction on brain neuronal cell death/survival. Ann N Y Acad Sci 1019:96–105

    Article  PubMed  CAS  Google Scholar 

  24. Hoane MR, Lasley LA, Akstulewicz SL (2004) Middle age increases tissue vulnerability and impairs sensorimotor and cognitive recovery following traumatic brain injury in the rat. Behav Brain Res 153:189–197

    Article  PubMed  Google Scholar 

  25. Hoehn BD, Palmer TD, Steinberg GK (2005) Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke 36:2718–2724

    Article  PubMed  CAS  Google Scholar 

  26. Hoff SF, Scheff SW, Cotman CW (1982) Lesion-induced synaptogenesis in the dentate gyrus of aged rats: I. Loss and reacquisition of normal synaptic density. J Comp Neurol 205:246–252

    Article  PubMed  CAS  Google Scholar 

  27. Howard CV, Reed MG (1998) Unbiased stereology. BIOS Scientific Publishers Ltd, Oxford

  28. Hsu JE, Jones TA (2006) Contralesional neural plasticity and functional changes in the less-affected forelimb after large and small cortical infarcts in rats. Exp Neurol. 2006 Jun 21; [Epub ahead of print]

  29. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  30. Kuan CY, Schloemer AJ, Lu A, Burns KA, Weng WL, Williams MT, Strauss KI, Vorhees CV, Flavell RA, Davis RJ, Sharp FR, Rakic P (2004) Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. J Neurosci 24:10763–10772

    Article  PubMed  CAS  Google Scholar 

  31. Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19:10153–10163

    PubMed  CAS  Google Scholar 

  32. Justicia C, Martin A, Rojas S, Gironella M, Cervera A, Panes J, Chamorro A, Planas AM (2005) Anti-VCAM-1 antibodies did not protect against ischemic damage either in rats or in mice. J Cereb Blood Flow Metab 26:421–432

    Article  CAS  Google Scholar 

  33. Li Y, Chen J, Chopp M (2001) Adult bone marrow transplantation after stroke in adultrats. Cell Transplant 10:31–40

    PubMed  CAS  Google Scholar 

  34. Li Y, Chen J, Chopp M (2002) Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci 193:137–146

    Article  PubMed  Google Scholar 

  35. Lindner MD, Gribkoff VK, Donlan NA, Jones TA (2003) Long-lasting functional disabilities in middle-aged rats with small cerebral infarcts. J Neurosci 23:10913–10922

    PubMed  CAS  Google Scholar 

  36. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, Hori M, Maatsumoto M (2000) Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocyte progenitors after focal cerebral ischemia in rats. Stroke 31:1735–1743

    PubMed  CAS  Google Scholar 

  37. Markus TM, Tsai SY, Bollnow MR, Farrer RG, O’Brien TE, Kindler-Baumann DR,Rausch M, Rudin M, Wiessner C, Mir AK, Schwab ME, Kartje GL (2005) Recovery and brain reorganization after stroke in adult and aged rats. Ann Neurol 58:950–953

    Article  PubMed  Google Scholar 

  38. Morgenstern DA, Asher RA, Fawcett JW (2002) Chondroitin sulphate proteoglycans in the CNS injury response. Prog Brain Res 137:313–332

    Article  PubMed  CAS  Google Scholar 

  39. Nichols NR, Finch CE, Nelson JF (1995) Food restriction delays the age-related increase in GFAP mRNA in rat hypothalamus. Neurobiol Aging 16:105–110

    Article  PubMed  CAS  Google Scholar 

  40. Ohta K, Iwai M, Sato K, Omori N, Nagano I, Shoji M, Abe K (2003) Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia. Neurosci Lett 335:159–162

    Article  PubMed  CAS  Google Scholar 

  41. Packard Jr DS, Menzies RA, Skalko RG (1973) Incorporation of thymidine and its analogue, bromodeoxyuridine, into embryos and maternal tissues of the mouse. Differentiation 1:397–404

    Article  PubMed  CAS  Google Scholar 

  42. Parhad IM, Scott JN, Cellars LA, Bains JS, Krekoski CA, Clark AW (1995) Axonal atrophy in aging is associated with a decline in neurofilament gene expression. J Neurosci Res 41:355–366

    Article  PubMed  CAS  Google Scholar 

  43. Petullo D, Masonic K, Lincoln C, Wibberley L, Teliska M, Yao DL (1999) Model development and behavioral assessment of focal cerebral ischemia in rats. Life Sci 64:1099–1108

    Article  PubMed  CAS  Google Scholar 

  44. Popa-Wagner A, Schroder E, Walker LC, Kessler Ch (1998) Beta-Amyloid precursor protein and ss-amyloid peptide immunoreactivity in the rat brain after middle cerebral artery occlusion: effect of age. Stroke 29:2196–2202

    PubMed  CAS  Google Scholar 

  45. Popa-Wagner A, Schröder E, Schmoll H, Walker LC, Kessler Ch (1999) Upregulation of MAP1B and MAP2 in the rat brain following middle cerebral artery occlusion: effect of age. J Cereb Blood Flow Metab 19:425–434

    Article  PubMed  CAS  Google Scholar 

  46. Popa-Wagner A, Fischer B, Platt D, Neubig R, Schmoll H, Kessler C (1999) Anomalous expression of microtubule-associated protein 1B in the hippocampus and cortex of aged rats treated with pentylenetetrazole. Neuroscience 94: 395–403

    Article  PubMed  CAS  Google Scholar 

  47. Popa-Wagner A, Fischer B, Platt D, Schmoll H, Kessler C (2000) Delayed and blunted induction of mRNA for tissue plasminogen activator in the brain of old rats following pentylenetetrazole-induced seizure activity. J Gerontol A Biol Sci Med Sci 55:B242–B248

    PubMed  CAS  Google Scholar 

  48. Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U (2001) Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol 155:733–738

    Article  PubMed  CAS  Google Scholar 

  49. Rakic P (2002) Adult neurogenesis in mammals: an identity crisis. J Neurosci 22:614–618

    PubMed  Google Scholar 

  50. Retchkiman I, Fischer B, Platt D, Popa-Wagner A (1996) Seizure induced c-fos mRNA in the rat brain: comparison between young and aging animals. Neurobiol Aging 17:41–44

    Article  PubMed  CAS  Google Scholar 

  51. Riddle DR, Sonntag WE, Lichtenwalner RJ (2003) Microvascular plasticity in aging. Ageing Res Rev 2:149–168

    Article  PubMed  Google Scholar 

  52. Rivlin AS, Tator CH (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    Article  PubMed  CAS  Google Scholar 

  53. Roberts EL Jr, Chih CP, Rosenthal M (1997) Age-related changes in brain metabolism and vulnerability to anoxia. Adv Exp Med Biol 411:83–89

    PubMed  Google Scholar 

  54. Schauwecker PE, Cheng HW, Serquinia RM, Mori N, McNeill TH (1995) Lesion-induced sprouting of commissural/associational axons and induction of GAP-43 mRNA in hilar and CA3 pyramidal neurons in the hippocampus are diminished in aged rats. J Neurosci 15:2462–2470

    PubMed  CAS  Google Scholar 

  55. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  56. Shetty AK, Rao MS, Hattiangady B, Zaman V, Shetty GA (2004) Hippocampal neurotrophin levels after injury: Relationship to the age of the hippocampus at the time of injury. J Neurosci Res 78:520–532

    Article  PubMed  CAS  Google Scholar 

  57. Shimamura M, Garcia JM, Prough DS, Hellmich HL (2004) Laser capture microdissection and analysis of amplified antisense RNA from distinct cell populations of the young and aged rat brain: effect of traumatic brain injury on hippocampal gene expression. Brain Res Mol Brain Res 122:47–61

    Article  PubMed  CAS  Google Scholar 

  58. Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    Article  PubMed  CAS  Google Scholar 

  59. Stone DJ, Rozovsky I, Morgan TE, Anderson CP, Lopez LM, Shick J, Finch CE (2000) Effects of age on gene expression during estrogen-induced synaptic sprouting in the female rat. Exp Neurol 165:46–57

    Article  PubMed  CAS  Google Scholar 

  60. Sutherland GR, Dix GA, Auer RN (1996) Effect of age in rodent models of focal and forebrain ischemia. Stroke 27:1663–1667

    PubMed  CAS  Google Scholar 

  61. Tomimoto H, Ihara M, Wakita H, Ohtani R, Lin JX, Akiguchi I, Kinoshita M, Shibasaki H (2003) Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol (Berl) 106:527–534

    Article  CAS  Google Scholar 

  62. Vallieres L, Sawchenko PE (2003) Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 23:5197–5207

    PubMed  CAS  Google Scholar 

  63. Vogelgesang S, Schroeder E, Walker LC, Pahnke J, Naubereit A, Walther R, Stausske D, Warzok RW (2002) Activated microglia do not mediate the early deposition of Abeta in carriers of the apolipoprotein Eepsilon4 allele. Clin Neuropathol 21:99–106

    PubMed  CAS  Google Scholar 

  64. Wang LC, Futrell N, Wang DZ, Chen FJ, Zhai QH, Schulz LR (1995) A reproducible model of middle cerebral infarcts, compatible with long-term survival, in aged rats. Stroke 26:2087–2090

    PubMed  CAS  Google Scholar 

  65. Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, Renner O, Bushong E, Ellisman M, Morgan TE, Pekny M (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24:5016–5021

    Article  PubMed  CAS  Google Scholar 

  66. Woods AG, Guthrie KM, Kurlawalla MA, Gall CM (1998) Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats. Neuroscience 83:663–668

    Article  PubMed  CAS  Google Scholar 

  67. Yu WH, Go L, Guinn BA, Fraser PE, Westaway D, McLaurin J (2002) Phenotypic and functional changes in glial cells as a function of age. Neurobiol Aging 23:105–115

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Deutsche Forschungsgemeinschaft (DFG) to CK (Ke 599/1–1), by NIH RR-00165 (LCW) and by a grant from “Prof. Dieter Platt Stiftung” to APW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurel Popa-Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popa-Wagner, A., Badan, I., Walker, L. et al. Accelerated infarct development, cytogenesis and apoptosis following transient cerebral ischemia in aged rats. Acta Neuropathol 113, 277–293 (2007). https://doi.org/10.1007/s00401-006-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0164-7

Keywords

Navigation